Page 9 - i1052-5173-31-6
P. 9

REFERENCES CITED                     Society of  London.  Series  A,  Mathematical and   ratios: Geophysical Research Letters, v. 47, no.
         Aikman, A.B., Harrison, T.M., and Lin, D., 2008,   Physical Sciences, v. 327, no. 1594, p. 379–413.  15, https://doi.org/10.1029/2020GL089202.
          Evidence for early (>44 Ma) Himalayan crustal   Ding, L., Xu, Q., Yue, Y., Wang, H., Cai, F., and Li,   Hu, X., Wang, J., BouDagher-Fadel, M., Garzanti, E.,
          thickening, Tethyan Himalaya, southeastern Ti-  S.,  2014, The  Andean-type  Gangdese  Moun-  and An, W., 2016, New insights into the timing of
          bet: Earth and Planetary Science Letters, v. 274,   tains: Paleoelevation record from the Paleocene–  the India–Asia collision from the Paleogene Quxia
          no.  1–2, p.  14–23,  https://doi.org/10.1016/j.epsl   Eocene Linzhou Basin: Earth and Planetary Sci-  and Jialazi formations of the Xigaze forearc basin,
          .2008.06.038.                       ence Letters, v. 392, p. 250–264, https://doi.org/   South Tibet: Gondwana Research, v. 32, p. 76–92,
         Aitchison, J.C., Ali, J.R., and Davis, A.M., 2007,   10.1016/j.epsl.2014.01.045.  https://doi.org/10.1016/j.gr.2015.02.007.
          When and where did India and Asia collide?: Jour-  Ellam, R.M., 1992, Lithospheric thickness as a con-  Ingalls, M., Rowley, D., Olack, G., Currie, B., Li,
          nal of Geophysical Research. Solid Earth, v. 112,   trol on basalt geochemistry: Geology, v.  20,   S., Schmidt, J., Tremblay, M., Polissar, P., Shus-
          no. B5, https://doi.org/10.1029/2006JB004706.  no.  2, p.  153–156,  https://doi.org/ 10.1130/  0091   ter, D.L., Lin, D., and Colman, A., 2018, Paleo-
         Alexander, E.W., Wielicki, M.M., Harrison, T.M.,   -7613 (1992)  020<0153:LTAACO>2.3.CO;2.  cene to Pliocene low-latitude, high-elevation
          DePaolo, D.J., Zhao, Z.D., and Zhu, D.C., 2019,   England, P.C., and Houseman, G.A., 1988, The me-  basins of southern Tibet: Implications for tec-
          Hf and Nd isotopic constraints on pre-and syn-  chanics of the Tibetan Plateau: Philosophical   tonic  models of  India-Asia  collision,  Cenozoic
          collisional crustal thickness of southern Tibet:   Transactions of the Royal Society of London.   climate, and geochemical weathering: Geologi-
          Journal of Geophysical Research. Solid Earth,   Series A, Mathematical and Physical Sciences,   cal Society of America Bulletin, v. 130, no. 1–2,
          v. 124, no. 11, p. 11,038–11,054, https://doi.org/   v. 326, no. 1589, p. 301–320.  p. 307–330, https://doi.org/10.1130/B31723.1.
          10.1029/2019JB017696.              Farner, M.J., and Lee, C.T.A., 2017, Effects of crust-  Kapp, J.L.D., Harrison, T.M., Kapp, P., Grove, M.,
         Argand,  E.,  1922,  June.  La  tectonique  de  l’Asie:   al thickness on magmatic differentiation in sub-  Lovera, O.M., and Lin, D., 2005, Nyainqentan-
          Conférence faite à Bruxelles, le 10 août 1922.  duction zone volcanism: A global study: Earth   glha Shan: A window into the tectonic, thermal,
         Chapman, J.B., and Kapp, P., 2017, Tibetan magma-  and Planetary Science Letters, v. 470, p. 96–107,   and geochemical evolution of the Lhasa block,
          tism database: Geochemistry Geophysics Geo-  https://doi.org/10.1016/j.epsl.2017.04.025.  southern Tibet: Journal of Geophysical Re-
          systems, v. 18, no. 11, p. 4229–4234, https://doi   Ge, W.P., Molnar, P., Shen, Z.K., and Li, Q., 2015,   search. Solid Earth, v.  110, B8,  https://doi.org/
          .org/ 10.1002/ 2017GC007217.        Present-day crustal thinning in the southern and   10.1029/2004JB003330.
         Chapman, J.B., Ducea, M.N., DeCelles, P.G., and   northern Tibetan plateau revealed by GPS mea-  Kapp, P., and DeCelles, P.G., 2019, Mesozoic–
          Profeta, L., 2015, Tracking changes in crustal   surements: Geophysical Research Letters, v. 42,   Cenozoic geological evolution of the Himalayan-
          thickness during orogenic evolution with Sr/Y:   no.  13, p.  5227–5235,  https://doi.org/10.1002/   Tibetan orogen  and working tectonic  hypothe-
                                              2015GL064347.
          An example from the North American Cordille-  Guo, L., Liu, Y., Liu, S., Cawood, P.A., Wang, Z., and   ses: American Journal of Science, v. 319, no. 3,
                                                                                  p. 159–254, https://doi.org/10.2475/03.2019.01.
          ra: Geology, v. 43, no. 10, p. 919–922, https://doi
          .org/10.1130/G36996.1.              Liu, H., 2013, Petrogenesis of Early to Middle Ju-  Kapp, P., and Guynn, J.H., 2004, Indian punch rifts
         Copeland, P., Harrison, T.M., Pan, Y., Kidd, W.S.F.,   rassic granitoid rocks from the Gangdese belt,   Tibet: Geology, v. 32, no. 11, p. 993–996, https://
                                              Southern Tibet: Implications for early history of
                                                                                  doi.org/10.1130/G20689.1.
          Roden, M., and Zhang, Y., 1995, Thermal evolution   the Neo-Tethys: Lithos, v. 179, p. 320–333, https://  Kapp, P., DeCelles, P.G., Gehrels, G.E., Heizler, M.,
          of the Gangdese batholith, southern Tibet: A histo-  doi.org/10.1016/j.lithos.2013.06.011.  and Ding, L., 2007, Geological records of the
          ry of episodic unroofing: Tectonics, v. 14, no. 2,   Hammersley, L., and DePaolo, D.J., 2006, Isotopic   Lhasa-Qiangtang and Indo-Asian collisions in the
          p. 223–236, https://doi.org/10.1029/ 94TC01676.  and geophysical constraints on the structure and   Nima area of central Tibet: Geological Society of
         Currie, B.S., Rowley, D.B., and Tabor, N.J., 2005,   evolution of the Clear Lake volcanic system: Jour-  America  Bulletin,  v.  119,  no.  7–8,  p.  917–933,
          Middle Miocene paleoaltimetry of southern Ti-  nal of Volcanology and Geothermal Research,   https://doi.org/10.1130/B26033.1.
          bet: Implications for the role of mantle thicken-  v. 153, no. 3–4, p. 331–356, https://doi .org/ 10.1016/   Kay, S.M., and Mpodozis, C., 2002, Magmatism as a
          ing and delamination in the Himalayan orogen:   j.jvolgeores.2005.12.003.  probe to  the Neogene shallowing of the  Nazca
          Geology, v. 33, no. 3, p. 181–184, https://doi.org/   Harrison, T.M., Copeland, P., Kidd, W.S.F., and Lo-  plate beneath the modern Chilean flat-slab: Jour-
          10.1130/G21170.1.                   vera, O.M., 1995, Activation of the Nyainqen-  nal of South American Earth Sciences, v.  15,
         DeCelles, P.G., Robinson, D.M., and Zandt, G.,   tanghla shear zone: Implications for uplift of the   no.  1, p.  39–57,  https://doi.org/10.1016/S0895
          2002, Implications of shortening in the Himala-  southern Tibetan Plateau: Tectonics, v. 14, no. 3,   -9811(02)00005-6.
          yan fold-thrust belt for uplift of the Tibetan   p. 658–676, https://doi.org/10.1029/95TC00608.  Lai, W., Hu, X., Garzanti, E., Sun, G., Garzione,
          Plateau: Tectonics, v. 21, no. 6, p. 12-1–12-25,   Heaman, L.M., Bowins, R., and Crocket, J., 1990,   C.N., Fadel, M.B., and Ma, A., 2019, Initial
          https://doi.org/10.1029/2001TC001322.  The chemical composition of igneous zircon   growth of the Northern Lhasaplano, Tibetan Pla-
         DeCelles, P.G., Quade, J., Kapp, P., Fan, M., Dettman,   suites: Implications for geochemical tracer stud-  teau in the early Late Cretaceous (ca. 92 Ma):
          D.L., and Ding, L., 2007, High and dry in central   ies: Geochimica et Cosmochimica Acta, v.  54,   Geological Society of America Bulletin, v. 131,
          Tibet during the Late Oligocene: Earth and Plane-  no.  6, p.  1597–1607,  https://doi.org/10.1016/0016   no. 11–12, p. 1823–1836, https://doi.org/10.1130/
          tary Science Letters, v. 253, no. 3–4, p. 389–401,   -7037(90)90394-Z.  B35124.1.
          https://doi.org/10.1016/j.epsl.2006.11.001.  Hildreth, W., and Moorbath, S., 1988, Crustal con-  Laskowski, A.K., Kapp, P., Ding, L., Campbell, C.,
         DePaolo, D.J., Perry, F.V., and Baldridge, W.S., 1992,   tributions to arc magmatism in the Andes of cen-  and Liu, X., 2017, Tectonic evolution of the Yar-
          Crustal versus mantle sources of granitic mag-  tral Chile: Contributions to Mineralogy and Pe-  lung suture zone, Lopu Range region, southern
          mas: A two-parameter model based on Nd isoto-  trology, v. 98, no. 4, p. 455–489, https://doi.org/   Tibet: Tectonics, v. 36, no. 1, p. 108–136, https://
          pic studies: Transactions of the Royal Society of   10.1007/BF00372365.  doi.org/10.1002/2016TC004334.
          Edinburgh. Earth Sciences, v. 83, no. 1–2, p. 439–  Horová, I., Kolacek, J., and Zelinka, J., 2012, Ker-  Leeder, M.R., Smith, A.B., and Jixiang, Y., 1988,
          446, https://doi.org/10.1017/S0263593300008117.  nel smoothing in MATLAB: Theory and prac-  Sedimentology, palaeoecology and palaeoenvi-
         DePaolo, D.J., Harrison, T.M., Wielicki, M., Zhao,   tice of kernel smoothing: Toh Tuck Link, Singa-  ronmental evolution of the 1985 Lhasa to Gol-
          Z., Zhu, D.C., Zhang, H., and Mo, X., 2019, Geo-  pore, World Scientific Publishing Co. Pte. Ltd.,   mud Geotraverse: Philosophical Transactions of
          chemical evidence for thin syn-collision crust   p. 137–178.            the Royal Society of London, Series A, Mathe-
          and major crustal thickening between 45 and 32   Hu, F., Ducea, M.N., Liu, S., and Chapman, J.B.,   matical and Physical Sciences, v. 327, no. 1594,
          Ma at the southern margin of Tibet: Gondwana   2017, Quantifying crustal thickness in continen-  p. 107–143.
          Research, v.  73, p.  123–135,  https://doi.org/   tal collisional belts: Global perspective and a   Leier, A.L., Kapp, P., Gehrels, G.E., and DeCelles,
          10.1016/j.gr.2019.03.011.           geologic  application:  Scientific  Reports,  v.  7,   P.G., 2007, Detrital zircon geochronology of
         Dewey, J.F., 1988, Extensional collapse of orogens:   no.  1, 7058, p.  1–10,  https://doi.org/10.1038/  Carboniferous–Cretaceous strata  in  the  Lhasa
          Tectonics,  v.  7,  no.  6,  p.  1123–1139,  https://doi   s41598-017-07849-7.  terrane, Southern Tibet: Basin Research, v. 19,
          .org/10.1029/TC007i006p01123.      Hu, F., Wu, F., Chapman, J.B., Ducea, M.N., Ji, W.,   no.  3, p.  361–378,  https://doi.org/ 10.1111/ j.1365
         Dewey, J.F., Shackleton, R.M., Chengfa, C., and Yiy-  and Liu, S., 2020, Quantitatively tracking the el-  -2117 .2007.00330.x.
          in, S., 1988, The tectonic evolution of the Tibetan   evation of the Tibetan Plateau since the Creta-  Liu, Z.C., Ding, L., Zhang, L.Y., Wang, C., Qiu, Z.L.,
          Plateau: Philosophical Transactions of the Royal   ceous: Insights from whole-rock Sr/Y and La/Yb   Wang, J.G., Shen, X.L., and Deng, X.Q., 2018,
                                                                                        www.geosociety.org/gsatoday  9
   4   5   6   7   8   9   10   11   12   13   14