Page 10 - i1052-5173-30-6
P. 10

dio (VRGS): 69th EAGE Conference and Exhibi-  McCaffrey, K.J.W., Hodgetts, D., Howell, J.A., Hunt,   Tavani, S., Granado, P., Corradetti, A., Girundo,
          tion incorporating SPE EUROPEC 2007, p. 11–14,   D., Imber, J., Jones, R.R., Tomasso, M., Thur-  M., Iannace, A., Arbués, P., Muñoz, J.A., and
          https://doi.org/10.3997/ 2214-4609 .201401718.  mond, J., and Viseur, S., 2010, Virtual fieldtrips   Mazzoli, S., 2014, Building a virtual outcrop, ex-
         Howell, J.A., Martinius, A.W., and Good, T.R.,   for petroleum geoscientists: Geological Society,   tracting geological information from it, and shar-
          2014, The application of outcrop analogues in   London, Petroleum Geology Conference Series,   ing the results in Google Earth via OpenPlot and
          geological modelling: A review, present status   v. 7, p. 19–26, https://doi.org/10.1144/0070019.  Photoscan: An example from the Khaviz Anticline
          and future outlook, in Martinius, A.W., Howell,   Nesbit, P.R., and Hugenholtz, C.H., 2019, Enhancing   (Iran): Computers & Geosciences, v. 63, p. 44–53,
          J.A., and Good, T.R., eds., Sediment-Body Ge-  UAV-SfM 3D model accuracy in high-relief land-  https://doi.org/ 10.1016/ j.cageo.2013.10.013.
          ometry and Heterogeneity: Analogue Studies for   scapes by incorporating oblique images: Remote   Thiele, S.T., Grose, L., Samsu, A., Micklethwaite,
          Modelling the Subsurface: Geological Society,   Sensing, v. 11, https://doi.org/10.3390/rs11030239.  S., Vollgger, S.A., and Cruden, A.R., 2017, Rap-
          London, Special Publication 387, p. 1–25, https://  Nesbit, P.R., Durkin, P.R., Hugenholtz, C.H., Hub-  id, semi-automatic fracture and contact mapping
          doi.org/10.1144/SP387.12.           bard,  S.M.,  and  Kucharczyk,  M.,  2018,  3-D
         Jones, R.R., McCaffrey, K.J., Clegg, P., Wilson, R.W.,   stratigraphic mapping using a digital outcrop   for point  clouds, images and geophysical  data:
          Holliman, N.S., Holdsworth, R.E., Imber, J., and   model derived from UAV images and structure-  Solid Earth, v. 8, p. 1241–1253, https://doi.org/
          Waggott, S., 2009, Integration of regional to out-  from-motion photogrammetry: Geosphere, v. 14,   10.5194/se-8-1241-2017.
          crop digital data: 3D visualisation of multi-scale   p. 1–18, https://doi.org/10.1130/GES01688.1.  Thurmond, J.B., Løseth, T.M., Rivenæs, J.C., Mar-
          geological models: Computers & Geosciences,   Nieminski, N.M., and Graham, S.A., 2017, Modeling   tinsen, O.J., and Aiken, C.L.V., 2006, Using out-
          v.  35, p.  4–18,  https://doi.org/10.1016/ j.cageo   stratigraphic architecture using small unmanned   crop data in the 21st century—New methods and
          .2007.09.007.                       aerial  vehicles  and  photogrammetry:  Examples   applications, with example from the Ainsa Tur-
         Küng, O., Strecha, C., Fua, P., Gurdan, D., Achtelik,   from the Miocene east coast basin, New Zealand:   bidite System: Deep-Water Outcrops of the
          M., Doth, K.-M., and Stumpf, J., 2012, Simpli-  Journal of Sedimentary Research, v. 87, p. 126–  World Atlas, CD-ROM.
          fied building models extraction from ultra-light   132, https://doi.org/10.2110/jsr.2017.5.  Turner, A.K., 2006, Challenges and trends for geo-
          UAV  imagery:  ISPRS—International  Archives   Pavlis, T.L., and Mason, K.A., 2017, The new world   logical modelling and visualisation: Bulletin of
          of the Photogrammetry, Remote Sensing and   of 3D geologic mapping: GSA Today, v.  27,   Engineering Geology and the Environment,
          Spatial Information Sciences, v. XXXVIII-1,   p. 4–10, https://doi.org/10.1130/GSATG313A.1.  v. 65, p. 109–127, https://doi.org/10.1007/s10064
          p. 217–222, https://doi.org/10.5194/isprsarchives                       -005-0015-0.
          -XXXVIII-1-C22-217-2011.           Robinson, A., Gordon, C.E., Houghton, J., Lloyd,   USGS, 2019, 3D Elevation Program (3DEP): https://
         MacEachren, A.M., and Kraak, M.J., 1997, Guest   G.E., and Morgan, D.J., 2015, ArcGIS to Unity: A   www.usgs.gov/news/usgs-3dep-lidar-point-
          editorial exploratory cartographic visualization:   design pipeline for creation of 3D terrain in seri-  cloud-now-available-amazon-public-dataset (ac-
          Advancing the agenda: Computers & Geoscienc-  ous egames  for  geology:  Geology  Today, v.  31,   cessed 11 Feb. 2020).
          es, v.  23, p.  335–343,  https://doi.org/ 10.1016/   p. 237–240, https://doi.org/10.1111/gto.12121.  von Reumont, F., Arsanjani, J.J., and Riedl, A., 2013,
          S0098-3004(97)00018-6.             Schuetz, M., 2016, Potree [Thesis]: Rendering   Visualization of geologic geospatial datasets
         Martinez-Rubi, O., de Kleijn, M., Verhoeven, S.,   Large Point Clouds in Web Browsers: Vienna   through X3D in the frame of WebGIS: Interna-
          Drost, N., Attema, J., van Meersbergen, M., van   University of Technology, 84 p.  tional Journal of Digital Earth, v. 6, p. 483–503,
          Nieuwpoort, R., de Hond, R., Dias, E., and   Simpson, C., and De  Paor, D.G., 2010, Restoring   https://doi.org/10.1080/17538947.2011.627471.
          Svetachov, P., 2016, Using modular 3D digital   maps and memoirs to four-dimensional space us-
          earth applications based on point clouds for the   ing virtual globe technology: A case study from   Wood, J.M., Thomas, R.G., and Visser, J., 1988,
                                                                                  Fluvial processes and vertebrate taphonomy:
          study of complex sites: International Journal of   the Scottish Highlands: Geological Society, Lon-
          Digital Earth, v. 9, p. 1135–1152, https://doi.org/   don, Special Publication 335, p. 429–441, https://  The  upper cretaceous Judith River formation,
          10.1080/17538947.2016.1205673.      doi.org/10.1144/SP335.20.           South-Central Dinosaur Provincial Park, Alber-
         McCaffrey, K.J.W., Jones, R.R., Holdsworth, R.E.,   Smith, D.G., Hubbard, S.M., Leckie, D.A., and Fus-  ta, Canada: Palaeogeography, Palaeoclimatolo-
          Wilson, R.W., Clegg, P., Imber, J., Holliman,   tic, M., 2009, Counter point bar deposits: Lithofa-  gy, Palaeoecology, v. 66, p. 127–143, https://doi
          N.S., and Trinks, I., 2005, Unlocking the spatial   cies and reservoir significance in the meandering   .org/10.1016/0031-0182(88)90085-5.
          dimension: Digital technologies and the future   modern Peace River and ancient McMurray For-
          of geoscience fieldwork: Journal of the Geologi-  mation, Alberta, Canada: Sedimentology, v. 56,   Manuscript received 5 Nov. 2019
          cal Society, v.  162, p.  927–938,  https://doi.org/   p.  1655–1669,  https://doi.org/10.1111/ j.1365-3091   Revised Manuscript received 12 Feb. 2020
          10.1144/0016-764905-017.            .2009.01050.x.                    Manuscript accepted 26 Feb. 2020































         10  GSA Today  |  June 2020
   5   6   7   8   9   10   11   12   13   14   15