Supplementary data for

Oceanic Origins of Continental Mantle Lithosphere

Andrea Servali\(^1\) and Jun Korenaga\(^1\)

\(^1\)Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, CT 06520-8109

*Corresponding author: Andrea Servali (email: andrea.servali@yale.edu)

Surface geology of cratons:

The data set includes samples from Churchill Province, Kaapvaal, Tanzania, Northern and Southern China, North Atlantic, Slave, Siberian, Karelian, and Wyoming cratons. In what follows, we summarize notable geological and geochemical characteristics for each of these cratons.

The Kaapvaal Craton comprises of several Archean terranes stabilized and amalgamated mostly by the early Proterozoic (de Wit et al., 1992). The Eastern Terrane is dominated by Paleoarchean tonalite-trondhjemite-granodiorite (TTG) gneisses and greenstone belts, whereas the Western Terrane is composed of Mesoarchean granitic gneisses and unfoliated granitoids and greenstone belts (e.g., Griffin et al., 2004). The welding of the Eastern and Western terranes took place during the Mesoarchean (e.g., Carlson and Moore, 2004). Two additional major modifications occurred to the Kaapvaal continental lithosphere, one in the Paleoproterozoic coincident to the Bushveld layered intrusion, the other in the Neoproterozoic with the accretion of the Namaqua-Natal orogenic belt (Carlson and Moore, 2004). The Kaapvaal Craton is surrounded by the Namaqua-Natal Province and the Rehoboth Province, both of which accreted
during the Paleoproterozoic (Janney et al., 2010).

Mantle xenoliths from the Tanzania region sample mantle beneath two distinct regions: the highly metamorphosed Dodoman belt (Manya et al., 2006) located within the Tanzania Craton, which is composed of early to mid-Archean terranes (Chesley et al., 1999), and the currently rifting Proterozoic Usagaran belt located east of the craton.

Eastern China is characterized by a complex terrane assemblage subdivided into North and South China Blocks, connected by the Qinling-Dabie-Sulu orogenic belt formed during their collision in the Mesozoic (Menzies et al., 2007). The South China Block encompasses the Archean to Paleoproterozoic Yangtze and the Paleoproterozoic to Mesoproterozoic Cathaysia blocks that amalgamated in the Neoproterozoic. The South China Block experienced extensive magmatism between Paleozoic and Cenozoic that resulted into major granitic and basaltic intrusions in the crystalline basement (Liu et al., 2012). The Northern China Block includes three regions: Western and Eastern Blocks and the Trans-North China Orogen. The Western Block has been tectonically stable and its crust is characterized by Archean metasedimentary belts. Instead, the East Block consists of re-activated Archean continental lithosphere that contains two distinct mantle xenoliths age groups spanning Phanerozoic and Archean; their age gap occurred in a rapid transition between the Paleozoic and Mesozoic, but relevant tectonics is still debated (e.g. Menzies et al., 2007).

The bulk of the Archean North Atlantic Craton is located in southern Greenland, which is covered by mostly perennial glaciers. The western part of the craton mainly consists of Neo- to Mesoarchean TTG and granitoids intermixed by Eoarchean terranes (Witting et al., 2010). The Paleoproterozoic Nagssuqotidian Orogen bounds to the north the North Atlantic Craton and it consists of reworked Archean terrains (Bizzarro et al., 2003; Witting et al., 2008). The North
Atlantic Craton retains highly refractory and pristine Archean mantle xenoliths and close age correspondence between crust and mantle (Hanghøj et al., 2001; Pearson et al., 2014).

Similar to the Kaapvaal Craton, the Siberian Craton is underlain by a lithospheric mantle characterized by silica enrichment. The Siberian Craton is mostly covered by Paleozoic sediments, but exposed parts of Anabar and Aldan shields show Paleoarchean gneisses and granulites basement (Ionov et al., 2010). The majority of mantle xenoliths here presented were collected from the Udachnaya and Obnazhennaya kimberlite fields (Ionov et al., 2015).

The Karelian Craton is predominantly composed of greenstone belts and TTG gneisses dating around the Neoarchean with some interbedded Mesoarchean terranes. All mantle xenoliths were recovered from the Kaavi-Kuopio kimberlite group in proximity to the southwestern border of the Karelian craton. During the Paleoproterozoic the border of the craton experienced a rifting event that was eventually followed by accretionary tectonics. These tectonic processes are responsible for mantle metasomatism and overprinting of the shallow Archean continental mantle (Peltonen et al, 2006).

The Laurentian shield consists of an assemblage of numerous Archean and Proterozoic terranes that are surrounded by Phanerozoic margins. Our compilation focuses on data collected from the Churchill Province, the Slave Craton and the Wyoming Craton. The Churchill Province experienced extensive Paleoproterozoic reactivation and contains two regions of geologically distinct age groups, one characterized by Archean gneisses, greenstone belts and granitoids, the other by Proterozoic magmatic and metamorphic rocks, associated to large igneous provinces and to the Taltson-Thelon orogeny, respectively (Irvine et al, 2003). The Slave Craton displays a distinct transition in age from east to west; the eastern basement is dominated by Neoarchean greenstone belts and plutonic suites, and the western basement contains Mesoarchean rocks.
including outliers as old as the Eoarchean Acasta gneiss (Heaman and Pearson, 2010). Lastly, kimberlites from the Wyoming province sample three distinct tectonic areas, the Archean Wyoming Craton, the Paleoproterozoic Great Fall tectonic suture zone, and the closely dated Central Plains orogen.

Figure Captions:

Supplementary Figure DR1: Covariation of whole-rock Fo contents and model ages for mantle xenoliths from (a) Kaapvaal and Tanzania cratons, (b) China cratons, (c) North Atlantic craton, and (d) other major cratons. For the majority of data, both T_{RD} and T_{MA} ages are shown (with T_{MA} being older). Solid symbols denote T_{RD} model ages corrected for eruption contamination, whereas open symbols denote those uncorrected. Dark blue symbols connected with line denote data with $T_{MA} - T_{RD} < 0.2$ Gy. Light blue symbols are used for data with $T_{MA} - T_{RD} < 1$ Gy. Symbols connected by dashed line are used for data uncorrected for eruption contamination. Gray symbols represent T_{RD} ages, for data with T_{MA} more than 1 Gy apart from T_{RD}, or with only T_{RD} ages reported. Our coding of symbols is to place greater emphasis on more reliable data. Shown in pink shading is the range of Mg# corresponding to the thermal evolution model of Korenaga (2017) for three different values of Urey ratio. The parameterization of Herzberg and Rudnick (2012) is used to convert mantle potential temperature to the Mg# of mantle residue.

Supplementary Figure DR2: (a) Covariation of whole-rock Mg# and model ages for the global compilation of mantle xenoliths data. (b) Covariation of Fo contents and model ages for the global compilation of mantle xenoliths data. For the majority of data, both T_{RD} and T_{MA} ages are shown (with T_{MA} being older). Solid symbols denote T_{RD} model ages corrected for eruption contamination.
contamination, whereas open symbols denote those uncorrected. Here the color coding of the symbols represents the rock types of mantle xenoliths (green: dunite, red: lherzolite, blue: harzburgite, brown: wehrlite, yellow: pyroxenite, gray: peridotites (unclassified)). As in Fig. DR1, predictions based on the thermal evolution model of Korenaga (2017) are also shown in both panels.

Supplementary Figure DR3: Comparison of T_{RD} ages computed with the estimates of primordial $^{187}\text{Re}/^{188}\text{Os}$ and $^{187}\text{Os}/^{188}\text{Os}$ according to Shirley and Walker (1998), Miesel et al. (2001), Brandon et al. (2001), and Walker et al. (2002). Dashed lines show differences between them; difference can be up to ~500 Myr for Phanerozoic model ages.

Supplementary Table: The table is organized by craton rather than by author or alphabetical order. From row 2 through 175 are for xenoliths from the Kaapvaal Craton and its surroundings, from row 176 through 194 are for the Tanzania Craton, from row 195 through 376 are for China Blocks, from row 377 through 447 are for the North Atlantic Craton and its surroundings, from row 348 through 466 are for the Karelian Craton, from row 467 through 517 are for the Siberian Craton, and from row 519 through 602 are those from the North American continent. The first five columns provide general information on sample: sample number, kimberlite in which it was collected, reference paper or papers, and the approximate location of the kimberlite. The next eleven columns contain major modal mineral composition and major oxide compositions in weight percent. Columns 17 and 18 are for equilibration temperature and pressure, respectively. Columns 19 is for whole-rock Mg#. Mg# is either computed using reported FeO and Fe$_2$O$_3$ by $(\text{MgO} ÷ 40.3044) ÷ ((\text{MgO} ÷ 40.3044) + ((\text{FeO} + \text{Fe}_2\text{O}_3 × 0.8998) ÷ 71.844)) × 100$ or, when iron oxide data is not readily available, it is reported as given by original publication. Column 20
includes data for Fo contents as reported by original publications. The next five columns (21-25)
and column 29 contain information on whole-rock Re-Os concentrations as well as
corresponding reported model ages by the authors of original analyses. Column 21 contains
\(^{187}\text{Os}/^{188}\text{Os}\) data, column 22 contains \(^{187}\text{Re}/^{188}\text{Os}\) data, and columns 23 contains \(^{187}\text{Os}/^{188}\text{Os}\)
corrected for contamination during kimberlite eruption. Columns 24 and 25 list, respectively,
\(T_{RD}\) and \(T_{MA}\) reported by authors, and column 29 shows the primordial \(^{187}\text{Re}/^{188}\text{Os}\) and
\(^{187}\text{Os}/^{188}\text{Os}\) estimates adopted for model age calculations in columns 24 and 25. Columns 26 to
28 are for the rock types of mantle xenoliths. We report rock types either based on modal
mineralogy or, when absent, according to rock type as reported by original publications.

Nomenclature for rock type is as follow: G stands for garnet, S for spinel, H for harzburgite, L
for lherzolite, Py for pyroxenite, P for peridotite, D for dunite, W for wehrlite. Columns 30-33
include model ages computed using \(T_{RD}\) and \(T_{MA}\) from Shirley and Walker (1998). Columns 30
and 31 are \(T_{RD}\) and \(T_{MA}\) recomputed for the values of primordial \(^{187}\text{Re}/^{188}\text{Os}\) and \(^{187}\text{Os}/^{188}\text{Os}\)
estimates from original manuscript, whereas columns 32 and 33 contain recomputed primordial
\(^{187}\text{Re}/^{188}\text{Os}\) and \(^{187}\text{Os}/^{188}\text{Os}\) estimates for primordial \(^{187}\text{Re}/^{188}\text{Os}\) and \(^{187}\text{Os}/^{188}\text{Os}\) values from
Walker et al. (2002).

REFERENCES CITED
siderophile element composition of the Earth’s primitive upper mantle: constraints from new
data on peridotite massifs and xenoliths. Geochimica et Cosmochimica Acta, v. 70, p. 4528-
4550.

Table DR1. Data and sources for all cratons
Comparison of Trd ages based on several source models.

Figure 3