Ongoing transient bedrock incision of the Fortymile River driven by Late Pliocene Yukon River capture, eastern Alaska and Yukon, Canada

Adrian Bender¹, Richard Lease¹, Lee Corbett², Paul Bierman² and Marc W. Caffee³

¹U.S. Geological Survey Alaska Science Center, Anchorage, Alaska, 99508; email: abender@usgs.gov
²University of Vermont, Department of Geology, Burlington, VT 05405
³Department of Physics and Astronomy, and Department of Earth, Atmospheric, and Planetary Sciences
Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907
EXPANDED METHODS

Disclaimer

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Cosmogenic isochron burial dating

The isochron method (Balco and Rovey, 2008) generally requires sampling quartz-bearing material spanning a range of pre-burial isotope concentrations from a single horizon (indicative of common burial history) buried by several m of sediment (sufficient to minimize post-burial production). We satisfy these sampling requirements at a shallow pit (sample horizon from 3.2-3.5 m depth) in the Fortymile River terrace gravel at a site we refer to as Clinton Creek located ~7 km upstream of the Fortymile-Yukon River confluence (Fig. DR1). The isochron method involves fitting a line to measured nuclide concentrations and analytical uncertainties, with 10Be and 26Al on the x- and y-axes, respectively (e.g., Bender et al., 2016). We use the York regression method housed in Isoplot 4.15 (http://www.bgc.org/isoplot_etc/isoplot.html) that considers x and y uncertainties (e.g., Mahon, 1996).

The slope (R_{meas}) of the line fit to the measured concentrations reflects the deviation from the surface 26Al: 10Be production ratio (R_{ini}; Fig. DR2). The slope deviation depends on isotope half-life and duration of post-burial decay, so the burial age (t_b) is calculated as:

$$t_b = -\ln(R_{\text{meas}}/R_{\text{ini}}) / (\lambda_{26} - \lambda_{10})$$

In keeping with other published applications of the isochron method (c.f. Schaller et al., 2016) we use the commonly accepted but poorly empirically constrained R_{ini} value of 6.75 (e.g., Corbett et al, 2017). Decay constants λ_{26} (9.83 ± 0.25 x 10$^{-7}$/yr) and λ_{10} (5.00 ± 0.26 x 10$^{-7}$/yr) equate with half-lives of 0.705 Myr for 26Al (Nishiizumi, 2004) and 1.387 Myr for 10Be (c.f., Chmeleff et al., 2010).

A key goal for the Fortymile River terrace gravel age is comparison and correlation with the Cordilleran Ice Sheet (CIS)-related gravel dated by Hidy and others (2013, 2018) between 1.12 ±0.36/0.22 Ma and 2.84 ±0.22/0.19 Ma. Comparing these ages requires parallel comparison of the respective methods, and the processes being dated. We use the same laboratory standards and decay constants assumed in the 26Al-10Be ages of Hidy and others (2013, 2018), but our sampling and computational approaches differ. Whereas we use the isochron approach (Balco and Rovey, 2008), Hidy and others (2013, 2018) calculate (a) a 2.84 ±0.22/0.19 Ma simple depositional age based on burial plot analysis of clasts from different depths across the CIS-over-local gravel contact, and (b) a 1.12 ±0.44/0.36 Ma depth profile exposure age of soil developed at the terrace surface of the CIS gravel. These ages bracket the onset of CIS terrace gravel deposition (~2.84 Ma) and the stabilization of the terrace surface (~1.12 Ma) such that a depositional age of terrace gravel that falls within this range correlates temporally to aggradation-prone sediment flux and discharge conditions imposed by the CIS climate (e.g., Hancock and Anderson, 2002). Moreover, Hidy and others (2018) interpret lower-than-expected in-situ isotope ratios in their exposure age profile as the result of isotope production impeded by temporally intermittent loess cover. We note that because the isochron technique relies on the pre-burial isotope inheritance of each sample, and not in situ-produced concentrations analyzed by depth profile techniques, the depositional age we compute (via the isochron technique) is not sensitive to intermittent burial by loess or other deposits.

10Be-based tributary erosion rates

We quantify basin-averaged erosion rates using 10Be concentrations measured in quartz from modern river sand (250-850 μm) at six tributary outlets on the Fortymile River. 10Be accumulates in quartz at Earth’s surface to depths commensurate with cosmic ray e-folding length (~0.6 m in rock), at rates determined largely by latitude and altitude (e.g., Lal, 1991; Stone, 2000) and inversely proportional to erosion rate (e.g., Brown et al., 1995; Granger et al., 1996; Bierman and Steig, 1996). Dividing the 10Be
production depth by a given measured erosion rate thus estimates the duration of erosion at the measured rate. Given similar rock type and durability throughout the Fortymile River basin and minimal lithologic variation within the sampled tributary catchments (Foster, 1976), we make the simple assumption that quartz sampled at the 250-850 μm grain size range is well-mixed and represents erosion throughout the tributary catchment upstream. We calculate the 10Be production rate-weighted average elevation and latitude for each sample catchment (e.g., Brown et al., 1995; Granger et al., 1996; Bierman and Steig, 1996; Portenga and Bierman, 2011), and use the CRONUS online calculator (https://hess.ess.washington.edu/) to assess erosion rates based on 10Be concentrations at each outlet (Balco et al., 2008). Topographic shielding minimally impacts 10Be production rates because topography is relatively open in the basins we sample, with average hillslopes of 6° to 16° (e.g., Bierman and Steig, 1996). Similarly, the mean winter snow depth of <50 cm measured at Fortymile Basin SNOTEL sites 1275 and 1189 (https://wcc.sc.egov.usda.gov/nwcc/) confers shielding effects that contribute ~1-3% uncertainty by some estimates (Gosse and Phillips, 2001). Schildgen and others (2005) show that, in certain locations, snow cover can reduce the long-term (15.5 ka) 10Be production rate up to 14%, and suggest that using contemporary climate data to estimate snow shielding may inject systematic error into 10Be production assessment and derivative calculations. Instead of attempting to explicitly treat snow or topographic shielding effects, we subsume the expected minimal snow and topographic shielding effects on 10Be production rate by directly adding 5% of each CRONUS-reported rate to the attendant reported uncertainty.

Bedrock incision

We infer bedrock incision rates by dividing strath height over the terrace gravel age (~2.44 Ma). We compute strath height as the difference between channel elevation, gravel thickness (tread to strath), and terrace tread (gravel top) elevation. We measured terrace gravel thickness (range 5 to 25 m) using a laser range finder or tape measure at four sites along the studied river reach, among which we observe linear upstream thinning ($y = -0.11x + 24$ where y represents gravel thickness in meters and x represents river distance in kilometers; $R^2 = 0.95$) that we use to extrapolate gravel thickness along the river. We use the active channel as a vertical datum for incision given that (a) the active channel occupies an elevation between the bedrock channel bed and flood stage levels at which lateral and vertical incision likely occur (e.g., Lague, 2014), (b) the ~2.44 Ma time interval over which we average bedrock incision approaches the upper limit of the time range over which bedrock incision rates may decrease as a function of age (Finnegan et al., 2014; Gallen et al., 2015), and (c) our channel profile analysis indicates that the entire knickzone remains in a transient state wherein active channel adjustment via bedrock incision likely continues to the present. Finally, we acknowledge that using a single terrace gravel age to infer rates of incision implicitly neglects the probable upstream decrease in gravel age that should reflect progressive terrace abandonment downstream of a headward-propagating knickzone, and therefore consider as minima the incision rates thusly inferred.

Stream power model

We analyze the Fortymile River longitudinal profile using the relationship between dimensionless channel slope (S) and drainage area (A, m2) observed among equilibrium-state channels (e.g., Sklar and Dietrich, 1998):

$$S = k_s A^{-\theta}$$ \hspace{1cm} (2)

Indices of channel steepness (k_s) and concavity (θ) represent the y-intercept and slope of a logarithmic regression of A and S, respectively. Fixing θ at a reference value (θ_{ref}) allows assessment of a channel steepness index normalized to drainage area (k_{sn})(Wobus et al, 2006), permitting quantitative comparison of geometrically distinct river reaches:

$$S = k_{sn} A^{-\theta_{ref}}$$ \hspace{1cm} (3)
We use knickzone incision rates to calibrate and test a common stream power incision model (e.g., Whipple and Tucker, 1999) that approximates bedrock incision rate \(I \), \(\text{m/y} \) as a power law function of \(A \) and \(S \):

\[
I = KA^nS^m \quad (4)
\]

Positive constants \(m \) and \(n \) reflect channel morphology, and \(K \) represents a dimensional coefficient of erosion (units of \(\text{m}^{1-2/n} \)) (e.g., Whipple and Tucker, 1999). The solution for \(S \) implicit in (4) takes the form of (3), assuming constant downstream \(K \) and \(n \), such that \(k_{sn} \) and \(\theta_{ref} \) equal the stream power terms \((I/K)^{1/n} \) and \(m/n \), respectively. We use the term compatibility between (3) and (4) to calculate \(K \), \(m \), and \(n \) based on headwaters \(k_{sn} \) value of 228 and \(m/n = \theta_{ref} = 0.6 \sim \theta_{headwaters} \) (the high end of model-predicted \(m/n \) values, 0.35 to 0.6; Whipple and Tucker, 1999).

We infer \(I \) from terrace tread elevation, gravel thickness, active channel elevation and the terrace gravel age averaged on 10 km river distance bins along the Fortymile River knickzone, and use the bin-averaged incision rates to solve for \(K \) linearly proportional to basal shear stress \((n = 2/3 \text{ and therefore } m = 2/5) \) and stream power \((n = 1 \text{ and therefore } m = 3/5) \). To discern a suitable, constant value of \(K \), we iteratively test values of \(K \) within the range published by Stock and Montgomery (1999) in an initial coarse search, and tighten the search interval for a fine search at the order of magnitude scale. We rearrange equation (4) to solve for knickzone channel elevation by treating \(S \) as the downstream change in elevation over distance, and systematically model the knickzone reach of the Fortymile River long profile for \(K \) values within the apparent order of magnitude that the suitable value of \(K \) resides. We converge on a suitable \(K \) value by minimizing the difference between regression equations from linear fits of the 10 km distance-binned modeled channel elevations against distance (for cases where bedrock incision is linearly proportional to shear stress and stream power) and the linear elevation-distance relationship computed for the knickzone \((y = 1.621x + 267.5) \). We calculate absolute differences in regression statistics and collect and plot each against the corresponding value of \(K \), fitting lines that slope positively and negatively toward x-intercepts that bracket the best value of \(K \). We use the linear fits (Fig. DR3) to calculate four values of \(K \) for both the stream power and shear stress cases, and average the values (which generally vary at the second or third decimal place) to ascertain a single uniform \(K \) value for each case.

TABLES
Table DR1: \(^{10}\text{Be} \) data
Table DR2: \(^{26}\text{Al} \) data
Table DR3: Basin-average erosion rate data submitted to CRONUS
Table DR4: Basin-average erosion rate output from CRONUS
Table DR5: \(^{10}\text{Be} \) and \(^{26}\text{Al} \) blank ratios

FIGURES
Figure DR1: Description for isochron burial age sample site 16ALR247 (Clinton Creek).
Figure DR2: Isochron plot with Clinton Creek data and line representing surface production ratio.
Figure DR3: Minimization plots used to quantify uniform Fortymile River \(K \) values.
Table DR1: Site data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Site</th>
<th>Longitude*</th>
<th>Latitude*</th>
<th>Elevation (m)</th>
<th>Site ID</th>
<th>Age (Myr)</th>
<th>10Be/9Be</th>
<th>26Al/27Al Ratio</th>
<th>Background-Adjusted 26Al/27Al Ratio</th>
<th>Uncertainty (Activity)</th>
<th>Concentration (obeying)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALR248</td>
<td>64.213600</td>
<td>-141.005549</td>
<td>307</td>
<td>2.84E-03</td>
<td>2.9E+03</td>
<td>1.4E+04</td>
<td>0.7E+04</td>
<td>2.7E+04</td>
<td>2.3E+04</td>
<td>0.6E+04</td>
<td>9.2E+01</td>
</tr>
<tr>
<td>ALR246</td>
<td>63.972815</td>
<td>-141.082802</td>
<td>248</td>
<td>2.84E-03</td>
<td>2.9E+03</td>
<td>1.4E+04</td>
<td>0.7E+04</td>
<td>2.7E+04</td>
<td>2.3E+04</td>
<td>0.6E+04</td>
<td>9.2E+01</td>
</tr>
<tr>
<td>ALR228</td>
<td>63.633289</td>
<td>-142.075528</td>
<td>602</td>
<td>2.84E-03</td>
<td>2.9E+03</td>
<td>1.4E+04</td>
<td>0.7E+04</td>
<td>2.7E+04</td>
<td>2.3E+04</td>
<td>0.6E+04</td>
<td>9.2E+01</td>
</tr>
<tr>
<td>ALR216</td>
<td>64.250244</td>
<td>-140.704821</td>
<td>221</td>
<td>2.84E-03</td>
<td>2.9E+03</td>
<td>1.4E+04</td>
<td>0.7E+04</td>
<td>2.7E+04</td>
<td>2.3E+04</td>
<td>0.6E+04</td>
<td>9.2E+01</td>
</tr>
</tbody>
</table>

*Samples processed in three batches consisting of two blanks each. Blank (H9) have an average 10Be/9Be ratio of 4.9E-15 and 5.0E-15 (Table DR1). Uncertainty in blanks was added quadratically. Quoted uncertainties represent the 1σ range.

*Deposition from the Coastal Elevation Database Alaska DSG, available by searching https://viewer.nationalmap.gov/gfes/

**No deposition, calculated using standard value of 1.3E+12 (Nishio et al., 2001).

***Cu = clast, p = amalgamated matrix pebbles, s = amalgamated matrix sand.

**Absolute elevation from the National Elevation Database Alaska DEM, available by searching https://viewer.nationalmap.gov/gfes/

Table DR2: Al data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Site</th>
<th>Longitude*</th>
<th>Latitude*</th>
<th>Elevation (m)</th>
<th>Site ID</th>
<th>Age (Myr)</th>
<th>10Be/9Be</th>
<th>26Al/27Al Ratio</th>
<th>Background-Adjusted 26Al/27Al Ratio</th>
<th>Uncertainty (Activity)</th>
<th>Concentration (obeying)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLK105</td>
<td>607</td>
<td>140.2452</td>
<td>1.0E+15</td>
<td>4.1E+14</td>
<td>3.2E+14</td>
<td>1.3E+14</td>
<td>3.2E+14</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
<tr>
<td>BLK106</td>
<td>607</td>
<td>140.2452</td>
<td>1.0E+15</td>
<td>4.1E+14</td>
<td>3.2E+14</td>
<td>1.3E+14</td>
<td>3.2E+14</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
<tr>
<td>BLK107</td>
<td>607</td>
<td>140.2452</td>
<td>1.0E+15</td>
<td>4.1E+14</td>
<td>3.2E+14</td>
<td>1.3E+14</td>
<td>3.2E+14</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
<tr>
<td>BLK108</td>
<td>607</td>
<td>140.2452</td>
<td>1.0E+15</td>
<td>4.1E+14</td>
<td>3.2E+14</td>
<td>1.3E+14</td>
<td>3.2E+14</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
</tbody>
</table>

*All samples were processed in three batches consisting of two blanks each. Blank (H9) have an average 10Be/9Be ratio of 4.9E-15 and 5.0E-15 (Table DR1). Uncertainty in blanks was added quadratically. Quoted uncertainties represent the 1σ range.

*Deposition from the Coastal Elevation Database Alaska DSG, available by searching https://viewer.nationalmap.gov/gfes/

**No deposition, calculated using standard value of 1.3E+12 (Nishio et al., 2001).

***Cu = clast, p = amalgamated matrix pebbles, s = amalgamated matrix sand.

**Absolute elevation from the National Elevation Database Alaska DEM, available by searching https://viewer.nationalmap.gov/gfes/

Table DR3: Basin-average erosion rate data submitted to CRONUS

<table>
<thead>
<tr>
<th>Sample</th>
<th>Name of Al-26</th>
<th>Concentration (atoms/g)</th>
<th>10Be/9Be</th>
<th>26Al/27Al Ratio</th>
<th>Uncertainty (Activity)</th>
<th>Concentration (obeying)</th>
<th>Name of Al-26 standardization</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALR202</td>
<td>64.251047</td>
<td>1.42E+14</td>
<td>6.1E+13</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
<tr>
<td>ALR203</td>
<td>64.251047</td>
<td>1.42E+14</td>
<td>6.1E+13</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
<tr>
<td>ALR204</td>
<td>64.251047</td>
<td>1.42E+14</td>
<td>6.1E+13</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
<tr>
<td>ALR205</td>
<td>64.251047</td>
<td>1.42E+14</td>
<td>6.1E+13</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
</tbody>
</table>

*Production-age (Myr), Pergolice and Brandner, 2011.

**Quoted uncertainties represent the 1σ range.

Table DR4: Basin-average erosion rate results from CRONUS

<table>
<thead>
<tr>
<th>Sample</th>
<th>Name of Al-26</th>
<th>Concentration (atoms/g)</th>
<th>10Be/9Be</th>
<th>26Al/27Al Ratio</th>
<th>Uncertainty (Activity)</th>
<th>Concentration (obeying)</th>
<th>Name of Al-26 standardization</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALR202</td>
<td>64.251047</td>
<td>1.42E+14</td>
<td>6.1E+13</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
<tr>
<td>ALR203</td>
<td>64.251047</td>
<td>1.42E+14</td>
<td>6.1E+13</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
<tr>
<td>ALR204</td>
<td>64.251047</td>
<td>1.42E+14</td>
<td>6.1E+13</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
<tr>
<td>ALR205</td>
<td>64.251047</td>
<td>1.42E+14</td>
<td>6.1E+13</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
</tbody>
</table>

*Production-age (Myr), Pergolice and Brandner, 2011.

**Quoted uncertainties represent the 1σ range.

Table DR5: Blank ratios

<table>
<thead>
<tr>
<th>Blank Name</th>
<th>UWR Batch Number</th>
<th>PRIME Cathode Number</th>
<th>10Be/9Be</th>
<th>26Al/27Al Ratio</th>
<th>Uncertainty (Activity)</th>
<th>Concentration (obeying)</th>
<th>Name of Al-26 standardization</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLX 507</td>
<td>144414</td>
<td>1.0E+15</td>
<td>4.1E+14</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
<tr>
<td>BLX 507</td>
<td>144414</td>
<td>1.0E+15</td>
<td>4.1E+14</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
<tr>
<td>BLX 507</td>
<td>144414</td>
<td>1.0E+15</td>
<td>4.1E+14</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
<tr>
<td>BLX 507</td>
<td>144414</td>
<td>1.0E+15</td>
<td>4.1E+14</td>
<td>1.3E+14</td>
<td>0.6E+14</td>
<td>9.2E+01</td>
<td></td>
</tr>
</tbody>
</table>

*Samples generally processed with two blanks per batch. Blank corrections use an average of the blank ratios rather than batch-by-batch correction.

Below Detection Limit (BDL)
Figure DR1: Description for isochron burial age sample site 16ALR247, located in Yukon, Canada near the Fortymile-Yukon River confluence at NAD1983 UTM coordinates 64.37448, -140.59348. (A) Uninterpreted photo of sample pit. (B) Sample pit with stratigraphic interpretation of subunits. Solid white lines represent contacts, dashed white lines represent sampled interval, from 320 cm to the base of the pit at 350 cm. (C) Enlarged, un-interpreted photo of subunit v, which we sampled the bottom 30 cm of for cosmogenic isochron burial dating. (D) Rock type percentages from a count of 64 clasts in subunit v (110-350 cm depth). (E) Samples submitted for cosmogenic isochron burial age analysis (Tables DR1, DR2). Rock type for cobbles indicated in white text. Scale is shown in centimeters and varies between photos. Amalgamated matrix pebbles and sand (not shown) processed and treated as individual samples.
Figure DR2: Isochron plot with line fit to Clinton Creek data (slope provides R_{meas}) and line representing surface production ratio for the Clinton Creek samples (R_{init} assumed ~6.75).
Figure DR3: Plots used to quantify a uniform Fortymile River K value from minimized linear regression statistic differences. (A) Difference in slope from modeled and DEM knickzone long profiles plotted over K value where $m = 0.6$ and $n = 1$ such that bedrock incision is linearly proportional to stream power, and (B) where $m = 0.4$ and $n = 0.67$ such that bedrock incision is linearly proportional to shear stress. (C) Difference in y-intercept from regressions of modeled and DEM knickzone long profiles plotted over K value where $m = 0.6$ and $n = 1$ such that bedrock incision is linearly proportional to stream power, and (D) where $m = 0.4$ and $n = 0.67$ such that bedrock incision is linearly proportional to shear stress.
REFERENCES CITED

