The Gangdese Culmination Model: Oligocene—Miocene Duplexing along the India-Asia Suture Zone, Lazi Region, Southern Tibet

Andrew K. Laskowski1*, Paul Kapp1, and Fulong Cai2

1Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA

2Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Beijing 100101, China

*Current address: Department of Earth Sciences, Montana State University, Bozeman, Montana 59717, USA

DATA REPOSITORY

Detrital zircon U-Pb analytical data are available in Table DR1
Igneous zircon U-Pb analytical data are available in Table DR2
Compiled thermochronologic data are available in Table DR3
<table>
<thead>
<tr>
<th>Sample</th>
<th>Zr</th>
<th>Pb206</th>
<th>Pb207</th>
<th>Pb208</th>
<th>Pb206/Pb207</th>
<th>Pb207/Pb206</th>
<th>Pb208/Pb206</th>
<th>U</th>
<th>Th</th>
<th>Zr/Pb</th>
<th>Nb</th>
<th>Ta</th>
<th>REE</th>
<th>Lu</th>
<th>Y</th>
<th>Yb</th>
<th>Hf</th>
<th>REE</th>
</tr>
</thead>
<tbody>
<tr>
<td>61012AL-1</td>
<td>46</td>
<td>3.746</td>
<td>3.1</td>
<td>10.2</td>
<td>01828</td>
<td>25.9</td>
<td>0.0259</td>
<td>9.2</td>
<td>0.34</td>
<td>171.1</td>
<td>1.8</td>
<td>153.7</td>
<td>34.1</td>
<td>108.7</td>
<td>567.9</td>
<td>171.1</td>
<td>13.8</td>
<td>NA</td>
</tr>
<tr>
<td>61012AL-1.4</td>
<td>74</td>
<td>6869</td>
<td>1.0</td>
<td>19.8</td>
<td>1078</td>
<td>20.4</td>
<td>0.0270</td>
<td>3.4</td>
<td>0.26</td>
<td>171.9</td>
<td>9.1</td>
<td>173.9</td>
<td>32.6</td>
<td>280.0</td>
<td>490.4</td>
<td>171.9</td>
<td>9.1</td>
<td>NA</td>
</tr>
<tr>
<td>61012AL-1.2</td>
<td>56</td>
<td>9463</td>
<td>1.1</td>
<td>21.8</td>
<td>8.6</td>
<td>13.8</td>
<td>0.0272</td>
<td>7.3</td>
<td>0.84</td>
<td>172.9</td>
<td>12.5</td>
<td>160.0</td>
<td>20.2</td>
<td>5.6</td>
<td>272.7</td>
<td>173.9</td>
<td>12.5</td>
<td>NA</td>
</tr>
<tr>
<td>61012AL-1.11</td>
<td>65</td>
<td>8682</td>
<td>1.0</td>
<td>18.6</td>
<td>11.9</td>
<td>22.4</td>
<td>0.0274</td>
<td>4.9</td>
<td>0.32</td>
<td>174.5</td>
<td>8.4</td>
<td>187.4</td>
<td>28.4</td>
<td>837.3</td>
<td>900.1</td>
<td>174.5</td>
<td>8.4</td>
<td>NA</td>
</tr>
<tr>
<td>61012AL-1.5</td>
<td>37</td>
<td>9199</td>
<td>1.4</td>
<td>23.8</td>
<td>3.4</td>
<td>0.160</td>
<td>34.4</td>
<td>0.0277</td>
<td>4.0</td>
<td>0.12</td>
<td>175.9</td>
<td>7.2</td>
<td>150.7</td>
<td>48.2</td>
<td>229.4</td>
<td>583.0</td>
<td>175.9</td>
<td>7.2</td>
</tr>
</tbody>
</table>

1. Analyses with >10% uncertainty (>1-sigma) in 206Pb/238U age are not included.
2. Analyses with >10% uncertainty (>1-sigma) in 206Pb/207Pb age are not included, unless 206Pb/238U age is >400 Ma.
3. Best age is determined from 206Pb/238U age for analyses with 206Pb/238U age >400 Ma and from 206Pb/207Pb age for analyses with 206Pb/238U age >400 Ma.
4. Concordance is based on 206Pb/238U age / 206Pb/207Pb age. Values not reported for 206Pb/238U age >400 Ma because of large uncertainty in 206Pb/207Pb age.
5. Analyses with 206Pb/238U age >400 Ma and with >3% discordance (>3-sigma concordance) are not included.
6. Analyses with 206Pb/238U age >400 Ma and >10% discordance (>3-sigma concordance) are not included.
7. All uncertainties are reported at the 1-sigma level, and include only measurement errors.
8. U concentration and U/Th are calibrated relative to FC-1 zircon standard and are accurate to ±2%.
9. Common Pb correction is from measured 204Pb with common Pb composition interpolated from Steiger and Jäger (1977).
10. Common Pb composition assigned uncertainties of 1.5 for 206Pb/204Pb, 0.3 for 207Pb/204Pb, and 2.0 for 208Pb/204Pb.
11. U/Th and 206Pb/207Pb fractionation is calibrated relative to fragments of large Sri Lanka zircons and individual zircons of FC-1, and FS3.
13. U-Th disequilibrium correction is applied to 206Pb/238 ages assuming a value of 2.3 for the magma.