Torlesse and Greenland Group data tables.

Amounts of 39Ar are x 10^{12} cc STP

Torlesse Terane

\[J = 0.006404 \]

<table>
<thead>
<tr>
<th>Sample</th>
<th>40Ar/39Ar</th>
<th>38Ar/39Ar</th>
<th>37Ar/39Ar</th>
<th>36Ar/39Ar</th>
<th>39Ar</th>
<th>40Ar* / 39Ar</th>
<th>Age (Ma)</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP1 bi. 1</td>
<td>49.50</td>
<td>0.009</td>
<td>-0.005</td>
<td>0.002</td>
<td>45.2</td>
<td>48.96</td>
<td>492</td>
<td>6</td>
</tr>
<tr>
<td>PP1 bi. 2</td>
<td>51.23</td>
<td>0.012</td>
<td>-0.005</td>
<td>0.002</td>
<td>40.1</td>
<td>50.72</td>
<td>507</td>
<td>9</td>
</tr>
<tr>
<td>PP1 bi. 3</td>
<td>52.57</td>
<td>0.000</td>
<td>-0.014</td>
<td>0.008</td>
<td>11.6</td>
<td>50.26</td>
<td>503</td>
<td>9</td>
</tr>
<tr>
<td>PP1 bi. 4</td>
<td>51.31</td>
<td>0.012</td>
<td>-0.002</td>
<td>0.002</td>
<td>33.1</td>
<td>50.74</td>
<td>507</td>
<td>7</td>
</tr>
<tr>
<td>PP1 bi. 5</td>
<td>50.10</td>
<td>0.013</td>
<td>-0.005</td>
<td>0.002</td>
<td>26.8</td>
<td>49.53</td>
<td>497</td>
<td>8</td>
</tr>
<tr>
<td>PP1 bi. 6</td>
<td>50.74</td>
<td>0.027</td>
<td>0.011</td>
<td>0.000</td>
<td>58.6</td>
<td>50.74</td>
<td>507</td>
<td>6</td>
</tr>
<tr>
<td>PP1 bi. 7</td>
<td>49.74</td>
<td>0.024</td>
<td>0.009</td>
<td>0.003</td>
<td>32.2</td>
<td>48.96</td>
<td>492</td>
<td>7</td>
</tr>
<tr>
<td>PP1 bi. 8</td>
<td>50.99</td>
<td>0.022</td>
<td>0.005</td>
<td>0.000</td>
<td>96.3</td>
<td>50.99</td>
<td>509</td>
<td>5</td>
</tr>
<tr>
<td>PP1 bi. 9</td>
<td>48.99</td>
<td>0.028</td>
<td>0.013</td>
<td>0.000</td>
<td>64.1</td>
<td>48.90</td>
<td>491</td>
<td>6</td>
</tr>
<tr>
<td>PP1 bi. 10</td>
<td>49.58</td>
<td>0.026</td>
<td>0.010</td>
<td>0.000</td>
<td>79.4</td>
<td>49.58</td>
<td>497</td>
<td>7</td>
</tr>
<tr>
<td>PP1 bi. 11</td>
<td>51.14</td>
<td>0.028</td>
<td>0.012</td>
<td>0.002</td>
<td>35.7</td>
<td>50.52</td>
<td>505</td>
<td>8</td>
</tr>
<tr>
<td>PP1 bi. 12</td>
<td>48.09</td>
<td>0.044</td>
<td>0.037</td>
<td>0.009</td>
<td>9.7</td>
<td>45.48</td>
<td>461</td>
<td>13</td>
</tr>
</tbody>
</table>

\[J = 0.006406 \]

OTQ1(R19578) Otaki River

<table>
<thead>
<tr>
<th>Sample</th>
<th>40Ar/39Ar</th>
<th>38Ar/39Ar</th>
<th>37Ar/39Ar</th>
<th>36Ar/39Ar</th>
<th>39Ar</th>
<th>40Ar* / 39Ar</th>
<th>Age (Ma)</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTQ1 mu. 1</td>
<td>21.66</td>
<td>0.006</td>
<td>-0.007</td>
<td>0.004</td>
<td>23.3</td>
<td>20.54</td>
<td>223</td>
<td>5</td>
</tr>
<tr>
<td>OTQ1 mu. 2</td>
<td>40.67</td>
<td>0.014</td>
<td>-0.002</td>
<td>0.005</td>
<td>15.4</td>
<td>39.17</td>
<td>404</td>
<td>11</td>
</tr>
<tr>
<td>OTQ1 mu. 3</td>
<td>20.31</td>
<td>0.008</td>
<td>-0.013</td>
<td>0.022</td>
<td>8.3</td>
<td>13.79</td>
<td>153</td>
<td>8</td>
</tr>
<tr>
<td>OTQ1 mu. 4</td>
<td>21.43</td>
<td>-0.004</td>
<td>-0.027</td>
<td>0.009</td>
<td>7.7</td>
<td>18.69</td>
<td>204</td>
<td>8</td>
</tr>
<tr>
<td>OTQ1 mu. 5</td>
<td>20.33</td>
<td>0.005</td>
<td>0.007</td>
<td>0.007</td>
<td>12.9</td>
<td>18.14</td>
<td>198</td>
<td>4</td>
</tr>
<tr>
<td>OTQ1 mu. 6</td>
<td>21.44</td>
<td>0.030</td>
<td>0.004</td>
<td>0.008</td>
<td>10.2</td>
<td>19.19</td>
<td>209</td>
<td>10</td>
</tr>
</tbody>
</table>

\[J = 0.006401 \text{ for mu.}, J = 0.006416 \text{ for bi.} \]

SIX47(R17754) Arthurs Pass

<table>
<thead>
<tr>
<th>Sample</th>
<th>40Ar/39Ar</th>
<th>38Ar/39Ar</th>
<th>37Ar/39Ar</th>
<th>36Ar/39Ar</th>
<th>39Ar</th>
<th>40Ar* / 39Ar</th>
<th>Age (Ma)</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIX 47 mu. 1</td>
<td>20.72</td>
<td>0.049</td>
<td>0.071</td>
<td>0.003</td>
<td>35.8</td>
<td>19.87</td>
<td>216</td>
<td>8</td>
</tr>
<tr>
<td>SIX 47 mu. 2</td>
<td>17.08</td>
<td>0.030</td>
<td>0.037</td>
<td>0.000</td>
<td>31.9</td>
<td>17.05</td>
<td>187</td>
<td>5</td>
</tr>
<tr>
<td>SIX 47 mu. 3</td>
<td>21.31</td>
<td>0.024</td>
<td>0.201</td>
<td>0.000</td>
<td>41.1</td>
<td>21.31</td>
<td>231</td>
<td>4</td>
</tr>
<tr>
<td>SIX 47 mu. 4</td>
<td>24.03</td>
<td>0.037</td>
<td>0.040</td>
<td>0.009</td>
<td>5.0</td>
<td>21.28</td>
<td>230</td>
<td>23</td>
</tr>
<tr>
<td>SIX 47 mu. 5</td>
<td>28.80</td>
<td>0.021</td>
<td>0.019</td>
<td>0.000</td>
<td>24.7</td>
<td>28.80</td>
<td>305</td>
<td>4</td>
</tr>
<tr>
<td>SIX 47 mu. 6</td>
<td>22.76</td>
<td>0.003</td>
<td>0.044</td>
<td>0.004</td>
<td>15.1</td>
<td>21.48</td>
<td>232</td>
<td>6</td>
</tr>
<tr>
<td>SIX 47 mu. 7</td>
<td>20.45</td>
<td>0.011</td>
<td>0.073</td>
<td>0.004</td>
<td>22.2</td>
<td>19.23</td>
<td>209</td>
<td>4</td>
</tr>
<tr>
<td>SIX 47 mu. 8</td>
<td>21.30</td>
<td>0.009</td>
<td>-0.038</td>
<td>0.007</td>
<td>9.4</td>
<td>19.31</td>
<td>210</td>
<td>8</td>
</tr>
<tr>
<td>SIX 47 mu. 9</td>
<td>20.93</td>
<td>-0.003</td>
<td>-0.053</td>
<td>0.005</td>
<td>7.2</td>
<td>19.31</td>
<td>210</td>
<td>11</td>
</tr>
<tr>
<td>SIX 47 mu. 10</td>
<td>20.98</td>
<td>0.003</td>
<td>0.036</td>
<td>0.002</td>
<td>9.6</td>
<td>20.49</td>
<td>222</td>
<td>10</td>
</tr>
<tr>
<td>SIX 47 mu. 11</td>
<td>20.94</td>
<td>0.014</td>
<td>0.013</td>
<td>0.004</td>
<td>31.6</td>
<td>19.76</td>
<td>215</td>
<td>4</td>
</tr>
<tr>
<td>SIX 47 mu. 12</td>
<td>21.26</td>
<td>0.015</td>
<td>0.000</td>
<td>0.003</td>
<td>26.2</td>
<td>20.46</td>
<td>222</td>
<td>4</td>
</tr>
<tr>
<td>SIX 47 mu. 13</td>
<td>20.76</td>
<td>0.015</td>
<td>-0.005</td>
<td>0.000</td>
<td>30.6</td>
<td>20.70</td>
<td>224</td>
<td>4</td>
</tr>
<tr>
<td>SIX 47 bi. 1</td>
<td>18.26</td>
<td>0.166</td>
<td>0.276</td>
<td>0.002</td>
<td>23.5</td>
<td>17.60</td>
<td>193</td>
<td>22</td>
</tr>
<tr>
<td>SIX 47 bi. 2</td>
<td>16.59</td>
<td>0.146</td>
<td>0.197</td>
<td>-0.002</td>
<td>15.9</td>
<td>17.21</td>
<td>188</td>
<td>14</td>
</tr>
<tr>
<td>SIX 47 bi. 3</td>
<td>15.45</td>
<td>0.271</td>
<td>0.578</td>
<td>0.023</td>
<td>2.1</td>
<td>8.69</td>
<td>98</td>
<td>43</td>
</tr>
<tr>
<td>SIX 47 bi. 4</td>
<td>18.50</td>
<td>0.183</td>
<td>0.236</td>
<td>-0.003</td>
<td>22.3</td>
<td>19.34</td>
<td>211</td>
<td>15</td>
</tr>
<tr>
<td>SIX 47 bi. 5</td>
<td>19.07</td>
<td>0.098</td>
<td>0.172</td>
<td>0.001</td>
<td>13.8</td>
<td>18.88</td>
<td>206</td>
<td>12</td>
</tr>
<tr>
<td>SIX 47 bi. 6</td>
<td>7.83</td>
<td>0.328</td>
<td>0.614</td>
<td>-0.013</td>
<td>10.5</td>
<td>11.57</td>
<td>129</td>
<td>57</td>
</tr>
<tr>
<td>SIX 47 bi. 7</td>
<td>10.94</td>
<td>0.271</td>
<td>0.456</td>
<td>-0.006</td>
<td>13.5</td>
<td>12.61</td>
<td>140</td>
<td>41</td>
</tr>
<tr>
<td>SIX 47 bi. 8</td>
<td>14.27</td>
<td>0.308</td>
<td>0.617</td>
<td>-0.025</td>
<td>10.9</td>
<td>21.57</td>
<td>233</td>
<td>55</td>
</tr>
<tr>
<td>SIX 47 bi. 9</td>
<td>13.90</td>
<td>0.252</td>
<td>0.438</td>
<td>-0.007</td>
<td>11.3</td>
<td>16.02</td>
<td>176</td>
<td>36</td>
</tr>
</tbody>
</table>
ONGQ1 (R17015) Ngauranga Gorge

<table>
<thead>
<tr>
<th>Sample</th>
<th>40Ar/39Ar</th>
<th>38Ar/39Ar</th>
<th>37Ar/39Ar</th>
<th>36Ar/39Ar</th>
<th>39Ar</th>
<th>40Ar*/39Ar Age (Ma) ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONGQ1 mu. 1</td>
<td>21.64</td>
<td>0.006</td>
<td>-0.022</td>
<td>0.004</td>
<td>11.1</td>
<td>20.36 ± 221 ± 7</td>
</tr>
<tr>
<td>ONGQ1 mu. 2</td>
<td>22.13</td>
<td>0.005</td>
<td>-0.020</td>
<td>0.001</td>
<td>14.9</td>
<td>21.74 ± 235 ± 4</td>
</tr>
<tr>
<td>ONGQ1 mu. 3</td>
<td>25.37</td>
<td>0.008</td>
<td>-0.035</td>
<td>0.003</td>
<td>7.7</td>
<td>24.57 ± 263 ± 8</td>
</tr>
<tr>
<td>ONGQ1 mu. 4</td>
<td>22.28</td>
<td>0.011</td>
<td>-0.018</td>
<td>0.001</td>
<td>14.1</td>
<td>21.84 ± 236 ± 7</td>
</tr>
<tr>
<td>ONGQ1 mu. 5</td>
<td>24.75</td>
<td>0.018</td>
<td>-0.001</td>
<td>0.003</td>
<td>15.4</td>
<td>23.82 ± 256 ± 7</td>
</tr>
<tr>
<td>ONGQ1 mu. 6</td>
<td>25.01</td>
<td>0.016</td>
<td>-0.006</td>
<td>0.001</td>
<td>14.7</td>
<td>28.73 ± 304 ± 9</td>
</tr>
<tr>
<td>ONGQ1 mu. 7</td>
<td>49.04</td>
<td>0.019</td>
<td>0.010</td>
<td>0.000</td>
<td>34.7</td>
<td>49.04 ± 492 ± 9</td>
</tr>
<tr>
<td>ONGQ1 mu. 8</td>
<td>22.12</td>
<td>0.039</td>
<td>0.021</td>
<td>0.009</td>
<td>3.2</td>
<td>19.50 ± 212 ± 25</td>
</tr>
<tr>
<td>ONGQ1 mu. 9</td>
<td>23.01</td>
<td>0.020</td>
<td>0.021</td>
<td>0.002</td>
<td>19.0</td>
<td>22.37 ± 241 ± 6</td>
</tr>
<tr>
<td>ONGQ1 mu. 10</td>
<td>24.13</td>
<td>0.021</td>
<td>0.007</td>
<td>0.000</td>
<td>27.6</td>
<td>24.13 ± 259 ± 4</td>
</tr>
<tr>
<td>ONGQ1 mu. 11</td>
<td>41.91</td>
<td>0.003</td>
<td>-0.006</td>
<td>0.000</td>
<td>16.1</td>
<td>41.91 ± 429 ± 7</td>
</tr>
<tr>
<td>ONGQ1 mu. 12</td>
<td>22.67</td>
<td>0.000</td>
<td>-0.050</td>
<td>0.002</td>
<td>11.4</td>
<td>22.13 ± 239 ± 12</td>
</tr>
<tr>
<td>ONGQ1 bi. 1</td>
<td>22.71</td>
<td>-0.003</td>
<td>-0.063</td>
<td>0.004</td>
<td>8.1</td>
<td>21.58 ± 233 ± 14</td>
</tr>
<tr>
<td>ONGQ1 bi. 2</td>
<td>19.39</td>
<td>0.169</td>
<td>0.324</td>
<td>0.023</td>
<td>8.1</td>
<td>12.73 ± 141 ± 14</td>
</tr>
<tr>
<td>ONGQ1 bi. 3</td>
<td>20.76</td>
<td>0.162</td>
<td>0.587</td>
<td>0.016</td>
<td>7.3</td>
<td>21.94 ± 237 ± 20</td>
</tr>
<tr>
<td>ONGQ1 bi. 4</td>
<td>17.29</td>
<td>0.126</td>
<td>0.237</td>
<td>0.005</td>
<td>11.7</td>
<td>15.85 ± 174 ± 22</td>
</tr>
<tr>
<td>ONGQ1 bi. 5</td>
<td>24.09</td>
<td>0.081</td>
<td>0.155</td>
<td>0.001</td>
<td>30.4</td>
<td>23.88 ± 257 ± 7</td>
</tr>
<tr>
<td>ONGQ1 bi. 6</td>
<td>17.39</td>
<td>0.225</td>
<td>0.881</td>
<td>-0.007</td>
<td>14.5</td>
<td>19.52 ± 212 ± 29</td>
</tr>
<tr>
<td>ONGQ1 bi. 7</td>
<td>29.07</td>
<td>0.121</td>
<td>1.043</td>
<td>0.031</td>
<td>2.3</td>
<td>19.85 ± 216 ± 40</td>
</tr>
<tr>
<td>ONGQ1 bi. 8</td>
<td>11.82</td>
<td>0.295</td>
<td>0.792</td>
<td>-0.001</td>
<td>6.3</td>
<td>12.00 ± 133 ± 57</td>
</tr>
<tr>
<td>ONGQ1 bi. 9</td>
<td>21.84</td>
<td>0.220</td>
<td>0.220</td>
<td>0.007</td>
<td>16.0</td>
<td>19.75 ± 215 ± 11</td>
</tr>
</tbody>
</table>

HERM3 (R19526) Hermitage; Mt Cook

<table>
<thead>
<tr>
<th>Sample</th>
<th>40Ar/39Ar</th>
<th>38Ar/39Ar</th>
<th>37Ar/39Ar</th>
<th>36Ar/39Ar</th>
<th>39Ar</th>
<th>40Ar*/39Ar Age (Ma) ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>HERM3 mu. 1</td>
<td>25.46</td>
<td>0.024</td>
<td>0.021</td>
<td>0.003</td>
<td>51.6</td>
<td>24.59 ± 264 ± 6</td>
</tr>
<tr>
<td>HERM3 mu. 2</td>
<td>45.01</td>
<td>0.042</td>
<td>0.055</td>
<td>0.001</td>
<td>16.1</td>
<td>44.68 ± 454 ± 14</td>
</tr>
<tr>
<td>HERM3 mu. 3</td>
<td>44.88</td>
<td>0.025</td>
<td>0.028</td>
<td>0.000</td>
<td>44.2</td>
<td>44.88 ± 456 ± 8</td>
</tr>
<tr>
<td>HERM3 mu. 4</td>
<td>20.12</td>
<td>0.022</td>
<td>0.015</td>
<td>0.000</td>
<td>222.4</td>
<td>20.12 ± 219 ± 5</td>
</tr>
<tr>
<td>HERM3 mu. 5</td>
<td>23.83</td>
<td>0.010</td>
<td>-0.009</td>
<td>0.001</td>
<td>34.1</td>
<td>23.54 ± 253 ± 4</td>
</tr>
<tr>
<td>HERM3 mu. 6</td>
<td>26.85</td>
<td>0.015</td>
<td>-0.002</td>
<td>0.001</td>
<td>24.4</td>
<td>26.68 ± 284 ± 5</td>
</tr>
<tr>
<td>HERM3 mu. 7</td>
<td>42.45</td>
<td>0.015</td>
<td>-0.006</td>
<td>0.000</td>
<td>23.5</td>
<td>42.45 ± 434 ± 7</td>
</tr>
<tr>
<td>HERM3 mu. 8</td>
<td>22.90</td>
<td>0.032</td>
<td>0.036</td>
<td>0.000</td>
<td>24.8</td>
<td>22.90 ± 247 ± 5</td>
</tr>
<tr>
<td>HERM3 mu. 9</td>
<td>28.61</td>
<td>0.042</td>
<td>0.060</td>
<td>0.009</td>
<td>31.3</td>
<td>25.93 ± 277 ± 5</td>
</tr>
<tr>
<td>HERM3 mu. 10</td>
<td>41.74</td>
<td>0.044</td>
<td>0.247</td>
<td>0.000</td>
<td>16.5</td>
<td>41.74 ± 427 ± 8</td>
</tr>
</tbody>
</table>

BKR3 (R19043) Broken River

<table>
<thead>
<tr>
<th>Sample</th>
<th>40Ar/39Ar</th>
<th>38Ar/39Ar</th>
<th>37Ar/39Ar</th>
<th>36Ar/39Ar</th>
<th>39Ar</th>
<th>40Ar*/39Ar Age (Ma) ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKR3 mu. 1</td>
<td>18.98</td>
<td>0.002</td>
<td>-0.006</td>
<td>0.010</td>
<td>8.9</td>
<td>16.04 ± 176 ± 8</td>
</tr>
<tr>
<td>BKR3 mu. 2</td>
<td>20.27</td>
<td>0.030</td>
<td>0.109</td>
<td>0.001</td>
<td>137.1</td>
<td>19.99 ± 217 ± 3</td>
</tr>
<tr>
<td>BKR3 mu. 3</td>
<td>19.70</td>
<td>0.053</td>
<td>0.071</td>
<td>0.004</td>
<td>48.9</td>
<td>18.55 ± 202 ± 7</td>
</tr>
<tr>
<td>BKR3 mu. 4</td>
<td>19.55</td>
<td>0.058</td>
<td>0.127</td>
<td>0.005</td>
<td>30.4</td>
<td>17.95 ± 196 ± 7</td>
</tr>
<tr>
<td>BKR3 mu. 5</td>
<td>19.85</td>
<td>0.025</td>
<td>0.019</td>
<td>0.001</td>
<td>68.1</td>
<td>19.49 ± 212 ± 3</td>
</tr>
<tr>
<td>BKR3 mu. 6</td>
<td>20.39</td>
<td>0.057</td>
<td>0.081</td>
<td>0.006</td>
<td>34.1</td>
<td>18.70 ± 204 ± 5</td>
</tr>
<tr>
<td>BKR3 mu. 7</td>
<td>25.03</td>
<td>0.031</td>
<td>0.026</td>
<td>0.003</td>
<td>109.1</td>
<td>24.18 ± 260 ± 5</td>
</tr>
<tr>
<td>BKR3 mu. 8</td>
<td>21.49</td>
<td>0.020</td>
<td>0.010</td>
<td>0.001</td>
<td>36.0</td>
<td>21.22 ± 230 ± 2</td>
</tr>
<tr>
<td>BKR3 mu. 9</td>
<td>21.13</td>
<td>0.017</td>
<td>0.035</td>
<td>0.002</td>
<td>81.2</td>
<td>20.60 ± 223 ± 4</td>
</tr>
</tbody>
</table>
KPT38(R14640) Kapti Island

<table>
<thead>
<tr>
<th>Sample</th>
<th>40Ar/39Ar</th>
<th>38Ar/39Ar</th>
<th>37Ar/39Ar</th>
<th>36Ar/39Ar</th>
<th>39Ar</th>
<th>40Ar*/39Ar Age (Ma) ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPT38 mu. 1</td>
<td>48.41</td>
<td>0.015</td>
<td>-0.005</td>
<td>0.001</td>
<td>26.6</td>
<td>48.00</td>
</tr>
<tr>
<td>KPT38 mu. 2</td>
<td>26.04</td>
<td>0.026</td>
<td>0.011</td>
<td>0.003</td>
<td>42.8</td>
<td>25.10</td>
</tr>
<tr>
<td>KPT38 mu. 3</td>
<td>23.90</td>
<td>0.021</td>
<td>0.007</td>
<td>0.001</td>
<td>61.4</td>
<td>23.69</td>
</tr>
<tr>
<td>KPT38 mu. 4</td>
<td>21.94</td>
<td>0.023</td>
<td>0.008</td>
<td>0.001</td>
<td>109.2</td>
<td>21.69</td>
</tr>
<tr>
<td>KPT38 mu. 5</td>
<td>22.01</td>
<td>0.032</td>
<td>0.016</td>
<td>0.001</td>
<td>98.4</td>
<td>21.83</td>
</tr>
<tr>
<td>KPT38 mu. 6</td>
<td>21.34</td>
<td>0.049</td>
<td>0.033</td>
<td>0.011</td>
<td>14.8</td>
<td>18.14</td>
</tr>
<tr>
<td>KPT38 mu. 7</td>
<td>21.42</td>
<td>0.028</td>
<td>0.015</td>
<td>0.001</td>
<td>65.1</td>
<td>20.98</td>
</tr>
<tr>
<td>KPT38 mu. 8</td>
<td>21.76</td>
<td>0.025</td>
<td>0.012</td>
<td>0.000</td>
<td>94.2</td>
<td>21.76</td>
</tr>
<tr>
<td>KPT38 mu. 9</td>
<td>22.32</td>
<td>0.027</td>
<td>0.015</td>
<td>0.002</td>
<td>46.6</td>
<td>21.75</td>
</tr>
<tr>
<td>KPT38 mu. 10</td>
<td>21.77</td>
<td>0.023</td>
<td>0.009</td>
<td>0.001</td>
<td>93.3</td>
<td>21.37</td>
</tr>
<tr>
<td>KPT38 mu. 11</td>
<td>25.25</td>
<td>0.059</td>
<td>0.044</td>
<td>0.000</td>
<td>163.7</td>
<td>25.25</td>
</tr>
<tr>
<td>KPT38 mu. 12</td>
<td>26.21</td>
<td>0.067</td>
<td>0.090</td>
<td>0.000</td>
<td>92.7</td>
<td>26.21</td>
</tr>
<tr>
<td>KPT38 mu. 13</td>
<td>24.10</td>
<td>0.049</td>
<td>0.035</td>
<td>0.004</td>
<td>47.8</td>
<td>22.92</td>
</tr>
<tr>
<td>KPT38 mu. 14</td>
<td>19.73</td>
<td>0.084</td>
<td>0.066</td>
<td>0.004</td>
<td>36.2</td>
<td>18.66</td>
</tr>
<tr>
<td>KPT38 mu. 15</td>
<td>22.02</td>
<td>0.014</td>
<td>0.086</td>
<td>0.004</td>
<td>108.7</td>
<td>20.98</td>
</tr>
<tr>
<td>KPT38 mu. 16</td>
<td>22.78</td>
<td>0.013</td>
<td>0.079</td>
<td>0.001</td>
<td>28.5</td>
<td>22.57</td>
</tr>
<tr>
<td>KPT38 mu. 17</td>
<td>21.41</td>
<td>0.014</td>
<td>0.099</td>
<td>0.001</td>
<td>36.9</td>
<td>21.05</td>
</tr>
<tr>
<td>KPT38 mu. 18</td>
<td>24.78</td>
<td>0.023</td>
<td>0.506</td>
<td>0.004</td>
<td>9.6</td>
<td>23.52</td>
</tr>
<tr>
<td>KPT38 mu. 19</td>
<td>23.80</td>
<td>0.012</td>
<td>0.138</td>
<td>0.002</td>
<td>21.5</td>
<td>23.18</td>
</tr>
<tr>
<td>KPT38 mu. 20</td>
<td>24.92</td>
<td>0.014</td>
<td>0.117</td>
<td>0.009</td>
<td>45.6</td>
<td>22.31</td>
</tr>
<tr>
<td>KPT38 mu. 21</td>
<td>22.45</td>
<td>0.012</td>
<td>-0.006</td>
<td>0.000</td>
<td>102.9</td>
<td>22.32</td>
</tr>
<tr>
<td>KPT38 mu. 22</td>
<td>22.62</td>
<td>0.022</td>
<td>0.564</td>
<td>0.002</td>
<td>26.3</td>
<td>22.10</td>
</tr>
</tbody>
</table>

AV1 (R17154) Lake Aviemore

<table>
<thead>
<tr>
<th>Sample</th>
<th>40Ar/39Ar</th>
<th>38Ar/39Ar</th>
<th>37Ar/39Ar</th>
<th>36Ar/39Ar</th>
<th>39Ar</th>
<th>40Ar*/39Ar Age (Ma) ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV1 mu.1</td>
<td>26.66</td>
<td>0.078</td>
<td>0.135</td>
<td>0.005</td>
<td>30.8</td>
<td>25.10</td>
</tr>
<tr>
<td>AV1 mu.2</td>
<td>43.66</td>
<td>0.108</td>
<td>0.109</td>
<td>0.016</td>
<td>9.5</td>
<td>38.86</td>
</tr>
<tr>
<td>AV1 mu.3</td>
<td>25.91</td>
<td>0.044</td>
<td>0.029</td>
<td>0.004</td>
<td>23.3</td>
<td>24.80</td>
</tr>
<tr>
<td>AV1 mu.4</td>
<td>44.45</td>
<td>0.038</td>
<td>0.022</td>
<td>0.002</td>
<td>32.7</td>
<td>43.96</td>
</tr>
<tr>
<td>AV1 mu.5</td>
<td>24.71</td>
<td>0.004</td>
<td>-0.013</td>
<td>0.004</td>
<td>21.9</td>
<td>23.61</td>
</tr>
<tr>
<td>AV1 mu.6</td>
<td>40.13</td>
<td>0.011</td>
<td>-0.024</td>
<td>0.011</td>
<td>7.3</td>
<td>36.89</td>
</tr>
<tr>
<td>AV1 mu.7</td>
<td>25.62</td>
<td>0.005</td>
<td>-0.012</td>
<td>0.003</td>
<td>14.9</td>
<td>24.83</td>
</tr>
<tr>
<td>AV1 mu.8</td>
<td>39.48</td>
<td>0.010</td>
<td>-0.003</td>
<td>0.006</td>
<td>15.6</td>
<td>37.79</td>
</tr>
<tr>
<td>AV1 mu.9</td>
<td>42.59</td>
<td>0.023</td>
<td>0.007</td>
<td>0.008</td>
<td>11.8</td>
<td>40.30</td>
</tr>
<tr>
<td>AV1 mu.10</td>
<td>22.44</td>
<td>0.020</td>
<td>0.009</td>
<td>0.004</td>
<td>22.8</td>
<td>21.21</td>
</tr>
<tr>
<td>AV1 mu.11</td>
<td>31.34</td>
<td>0.024</td>
<td>0.480</td>
<td>0.009</td>
<td>17.1</td>
<td>28.55</td>
</tr>
<tr>
<td>AV1 mu.12</td>
<td>45.71</td>
<td>0.016</td>
<td>0.399</td>
<td>0.000</td>
<td>11.4</td>
<td>45.71</td>
</tr>
<tr>
<td>AV1 mu.13</td>
<td>42.35</td>
<td>0.019</td>
<td>0.472</td>
<td>0.003</td>
<td>26.3</td>
<td>41.35</td>
</tr>
<tr>
<td>AV1 mu.14</td>
<td>34.89</td>
<td>0.014</td>
<td>0.401</td>
<td>0.002</td>
<td>23.6</td>
<td>34.39</td>
</tr>
<tr>
<td>AV1 mu.15</td>
<td>23.12</td>
<td>0.017</td>
<td>0.365</td>
<td>0.000</td>
<td>21.9</td>
<td>23.09</td>
</tr>
<tr>
<td>AV1 mu.16</td>
<td>35.47</td>
<td>0.016</td>
<td>0.184</td>
<td>0.004</td>
<td>31.4</td>
<td>34.42</td>
</tr>
<tr>
<td>AV1 mu.17</td>
<td>32.90</td>
<td>0.017</td>
<td>0.162</td>
<td>0.005</td>
<td>29.6</td>
<td>31.41</td>
</tr>
<tr>
<td>AV1 mu.18</td>
<td>27.00</td>
<td>0.016</td>
<td>0.172</td>
<td>0.001</td>
<td>35.1</td>
<td>26.83</td>
</tr>
<tr>
<td>AV1 mu.19</td>
<td>24.40</td>
<td>0.026</td>
<td>0.674</td>
<td>0.000</td>
<td>14.4</td>
<td>24.28</td>
</tr>
<tr>
<td>AV1 mu.20</td>
<td>26.28</td>
<td>0.020</td>
<td>0.512</td>
<td>0.000</td>
<td>13.2</td>
<td>26.28</td>
</tr>
<tr>
<td>AV1 mu.21</td>
<td>23.47</td>
<td>0.017</td>
<td>0.270</td>
<td>0.001</td>
<td>16.0</td>
<td>23.26</td>
</tr>
</tbody>
</table>
J = 0.006408 UHU10(R19316) Upper Hutt

<table>
<thead>
<tr>
<th>Sample</th>
<th>40Ar/39Ar</th>
<th>38Ar/39Ar</th>
<th>37Ar/39Ar</th>
<th>36Ar/39Ar</th>
<th>39Ar</th>
<th>40Ar*/39Ar Age (Ma) ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHU10 mu. 1</td>
<td>21.92</td>
<td>0.014</td>
<td>0.002</td>
<td>0.000</td>
<td>114.9</td>
<td>21.91 237 8</td>
</tr>
<tr>
<td>UHU10 mu. 2</td>
<td>22.91</td>
<td>0.016</td>
<td>0.009</td>
<td>0.000</td>
<td>152.4</td>
<td>22.91 247 5</td>
</tr>
<tr>
<td>UHU10 mu. 3</td>
<td>31.25</td>
<td>0.022</td>
<td>0.016</td>
<td>0.000</td>
<td>19.5</td>
<td>31.25 329 9</td>
</tr>
<tr>
<td>UHU10 mu. 4</td>
<td>26.09</td>
<td>0.019</td>
<td>0.020</td>
<td>0.003</td>
<td>24.4</td>
<td>25.32 271 9</td>
</tr>
<tr>
<td>UHU10 mu. 5</td>
<td>22.17</td>
<td>0.016</td>
<td>0.007</td>
<td>0.000</td>
<td>25.3</td>
<td>22.06 238 4</td>
</tr>
<tr>
<td>UHU10 mu. 6</td>
<td>23.60</td>
<td>0.013</td>
<td>0.001</td>
<td>0.000</td>
<td>34.7</td>
<td>23.58 254 4</td>
</tr>
<tr>
<td>UHU10 mu. 7</td>
<td>23.79</td>
<td>0.022</td>
<td>0.016</td>
<td>0.000</td>
<td>64.0</td>
<td>23.69 255 6</td>
</tr>
<tr>
<td>UHU10 mu. 8</td>
<td>20.05</td>
<td>0.050</td>
<td>0.057</td>
<td>0.003</td>
<td>11.6</td>
<td>19.20 209 9</td>
</tr>
<tr>
<td>UHU10 mu. 9</td>
<td>22.68</td>
<td>0.027</td>
<td>0.041</td>
<td>0.000</td>
<td>91.2</td>
<td>22.68 245 4</td>
</tr>
</tbody>
</table>

J = 0.006403 KAK42(R19487) Kakahu River

<table>
<thead>
<tr>
<th>Sample</th>
<th>40Ar/39Ar</th>
<th>38Ar/39Ar</th>
<th>37Ar/39Ar</th>
<th>36Ar/39Ar</th>
<th>39Ar</th>
<th>40Ar*/39Ar Age (Ma) ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAK42 bi. 1</td>
<td>31.14</td>
<td>0.115</td>
<td>4.544</td>
<td>0.039</td>
<td>2.5</td>
<td>19.67 214 37</td>
</tr>
<tr>
<td>KAK42 bi. 2</td>
<td>25.33</td>
<td>0.136</td>
<td>4.370</td>
<td>0.027</td>
<td>4.6</td>
<td>17.50 191 31</td>
</tr>
</tbody>
</table>

J = 0.006405 CI38(R15533) Matarakau; Chatham Is.

<table>
<thead>
<tr>
<th>Sample</th>
<th>40Ar/39Ar</th>
<th>38Ar/39Ar</th>
<th>37Ar/39Ar</th>
<th>36Ar/39Ar</th>
<th>39Ar</th>
<th>40Ar*/39Ar Age (Ma) ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI18 mu. 1</td>
<td>20.97</td>
<td>-0.001</td>
<td>0.003</td>
<td>0.005</td>
<td>8.5</td>
<td>19.47 212 9</td>
</tr>
<tr>
<td>CI18 mu. 2</td>
<td>22.25</td>
<td>0.006</td>
<td>-0.002</td>
<td>0.003</td>
<td>20.5</td>
<td>21.18 218 4</td>
</tr>
<tr>
<td>CI18 mu. 3</td>
<td>22.12</td>
<td>0.013</td>
<td>0.009</td>
<td>0.012</td>
<td>8.0</td>
<td>18.22 202 9</td>
</tr>
<tr>
<td>CI18 mu. 4</td>
<td>18.22</td>
<td>0.005</td>
<td>0.034</td>
<td>0.013</td>
<td>8.1</td>
<td>14.00 161 11</td>
</tr>
<tr>
<td>CI18 mu. 5</td>
<td>20.84</td>
<td>0.022</td>
<td>0.095</td>
<td>0.012</td>
<td>5.4</td>
<td>17.05 197 19</td>
</tr>
<tr>
<td>CI18 mu. 6</td>
<td>24.05</td>
<td>0.014</td>
<td>0.010</td>
<td>0.005</td>
<td>18.0</td>
<td>22.40 230 5</td>
</tr>
<tr>
<td>CI18 mu. 7</td>
<td>20.51</td>
<td>0.045</td>
<td>0.105</td>
<td>0.032</td>
<td>5.1</td>
<td>10.16 132 18</td>
</tr>
<tr>
<td>CI18 mu. 8</td>
<td>22.97</td>
<td>0.021</td>
<td>0.038</td>
<td>0.002</td>
<td>62.4</td>
<td>22.44 225 3</td>
</tr>
<tr>
<td>CI18 mu. 9</td>
<td>22.44</td>
<td>0.019</td>
<td>0.012</td>
<td>0.008</td>
<td>17.0</td>
<td>19.99 206 4</td>
</tr>
</tbody>
</table>

Greenland Group

J = 0.006404 JB1(R15385) Jackson Bay

<table>
<thead>
<tr>
<th>Sample</th>
<th>40Ar/39Ar</th>
<th>38Ar/39Ar</th>
<th>37Ar/39Ar</th>
<th>36Ar/39Ar</th>
<th>39Ar</th>
<th>40Ar*/39Ar Age (Ma) ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>JB1 mu. 1</td>
<td>49.50</td>
<td>0.009</td>
<td>-0.005</td>
<td>0.002</td>
<td>45.2</td>
<td>48.96 492 6</td>
</tr>
<tr>
<td>JB1 mu. 2</td>
<td>51.23</td>
<td>0.012</td>
<td>-0.005</td>
<td>0.002</td>
<td>40.1</td>
<td>50.72 507 9</td>
</tr>
<tr>
<td>JB1 mu. 3</td>
<td>52.57</td>
<td>0.000</td>
<td>-0.014</td>
<td>0.008</td>
<td>11.6</td>
<td>50.26 503 9</td>
</tr>
<tr>
<td>JB1 mu. 4</td>
<td>51.31</td>
<td>0.012</td>
<td>-0.002</td>
<td>0.002</td>
<td>33.1</td>
<td>50.74 507 7</td>
</tr>
<tr>
<td>JB1 mu. 5</td>
<td>50.10</td>
<td>0.013</td>
<td>-0.005</td>
<td>0.002</td>
<td>26.8</td>
<td>49.53 497 8</td>
</tr>
<tr>
<td>JB1 mu. 6</td>
<td>50.74</td>
<td>0.027</td>
<td>0.011</td>
<td>0.000</td>
<td>58.6</td>
<td>50.74 507 6</td>
</tr>
<tr>
<td>JB1 mu. 7</td>
<td>49.74</td>
<td>0.024</td>
<td>0.009</td>
<td>0.003</td>
<td>32.2</td>
<td>48.96 492 7</td>
</tr>
<tr>
<td>JB1 mu. 8</td>
<td>50.99</td>
<td>0.022</td>
<td>0.005</td>
<td>0.000</td>
<td>96.3</td>
<td>50.99 509 5</td>
</tr>
<tr>
<td>JB1 mu. 9</td>
<td>48.99</td>
<td>0.028</td>
<td>0.013</td>
<td>0.000</td>
<td>64.1</td>
<td>48.90 491 6</td>
</tr>
<tr>
<td>JB1 mu. 10</td>
<td>49.58</td>
<td>0.026</td>
<td>0.010</td>
<td>0.000</td>
<td>79.4</td>
<td>49.58 497 7</td>
</tr>
<tr>
<td>JB1 mu. 11</td>
<td>51.14</td>
<td>0.028</td>
<td>0.012</td>
<td>0.002</td>
<td>35.7</td>
<td>50.52 505 8</td>
</tr>
<tr>
<td>JB1 mu. 12</td>
<td>48.09</td>
<td>0.044</td>
<td>0.037</td>
<td>0.009</td>
<td>9.7</td>
<td>45.48 461 13</td>
</tr>
<tr>
<td>Sample</td>
<td>40Ar/39Ar</td>
<td>38Ar/39Ar</td>
<td>37Ar/39Ar</td>
<td>36Ar/39Ar</td>
<td>39Ar</td>
<td>40Ar* / 39Ar Age (Ma)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>MTG mu.1</td>
<td>47.54</td>
<td>0.029</td>
<td>0.011</td>
<td>0.003</td>
<td>33.8</td>
<td>46.63</td>
</tr>
<tr>
<td>MTG mu.2</td>
<td>44.93</td>
<td>0.036</td>
<td>0.016</td>
<td>0.005</td>
<td>30.4</td>
<td>43.48</td>
</tr>
<tr>
<td>MTG mu.3</td>
<td>45.27</td>
<td>0.029</td>
<td>0.013</td>
<td>0.003</td>
<td>28.5</td>
<td>44.30</td>
</tr>
<tr>
<td>MTG mu.4</td>
<td>44.72</td>
<td>0.029</td>
<td>0.010</td>
<td>0.013</td>
<td>11.9</td>
<td>41.00</td>
</tr>
<tr>
<td>MTG mu.5</td>
<td>47.33</td>
<td>0.045</td>
<td>0.029</td>
<td>0.002</td>
<td>39.3</td>
<td>46.83</td>
</tr>
<tr>
<td>MTG mu.6</td>
<td>42.00</td>
<td>0.029</td>
<td>0.014</td>
<td>0.000</td>
<td>107.5</td>
<td>42.00</td>
</tr>
<tr>
<td>MTG mu.7</td>
<td>49.65</td>
<td>0.045</td>
<td>0.023</td>
<td>0.005</td>
<td>11.9</td>
<td>48.10</td>
</tr>
<tr>
<td>MTG mu.8</td>
<td>55.85</td>
<td>0.043</td>
<td>0.027</td>
<td>0.005</td>
<td>22.0</td>
<td>54.38</td>
</tr>
<tr>
<td>MTG mu.9</td>
<td>48.55</td>
<td>0.043</td>
<td>0.025</td>
<td>0.004</td>
<td>24.5</td>
<td>47.37</td>
</tr>
<tr>
<td>MTG mu.10</td>
<td>44.30</td>
<td>0.034</td>
<td>0.019</td>
<td>0.000</td>
<td>55.4</td>
<td>44.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>40Ar/39Ar</th>
<th>38Ar/39Ar</th>
<th>37Ar/39Ar</th>
<th>36Ar/39Ar</th>
<th>39Ar</th>
<th>40Ar* / 39Ar Age (Ma)</th>
<th>±</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRU1 mu.1</td>
<td>45.40</td>
<td>0.031</td>
<td>0.043</td>
<td>0.001</td>
<td>53.3</td>
<td>44.99</td>
<td>457</td>
</tr>
<tr>
<td>BRU1 mu.2</td>
<td>49.09</td>
<td>0.029</td>
<td>0.031</td>
<td>0.006</td>
<td>13.9</td>
<td>47.31</td>
<td>477</td>
</tr>
<tr>
<td>BRU1 mu.3</td>
<td>48.77</td>
<td>0.025</td>
<td>0.041</td>
<td>0.005</td>
<td>37.5</td>
<td>47.18</td>
<td>476</td>
</tr>
<tr>
<td>BRU1 mu.4</td>
<td>42.59</td>
<td>0.043</td>
<td>0.063</td>
<td>0.009</td>
<td>9.0</td>
<td>39.98</td>
<td>411</td>
</tr>
<tr>
<td>BRU1 mu.5</td>
<td>46.98</td>
<td>0.033</td>
<td>0.062</td>
<td>0.006</td>
<td>64.7</td>
<td>45.35</td>
<td>460</td>
</tr>
<tr>
<td>BRU1 mu.6</td>
<td>44.12</td>
<td>0.029</td>
<td>0.063</td>
<td>0.010</td>
<td>13.5</td>
<td>41.28</td>
<td>423</td>
</tr>
<tr>
<td>BRU1 mu.7</td>
<td>39.06</td>
<td>0.061</td>
<td>0.156</td>
<td>0.014</td>
<td>38.9</td>
<td>34.91</td>
<td>364</td>
</tr>
<tr>
<td>BRU1 mu.8</td>
<td>51.12</td>
<td>0.039</td>
<td>0.092</td>
<td>0.008</td>
<td>33.5</td>
<td>48.83</td>
<td>491</td>
</tr>
<tr>
<td>BRU1 mu.9</td>
<td>47.33</td>
<td>0.036</td>
<td>0.081</td>
<td>0.007</td>
<td>56.5</td>
<td>45.36</td>
<td>460</td>
</tr>
<tr>
<td>BRU1 mu.10</td>
<td>44.61</td>
<td>0.040</td>
<td>0.092</td>
<td>0.010</td>
<td>15.8</td>
<td>41.78</td>
<td>428</td>
</tr>
<tr>
<td>BRU1 mu.11</td>
<td>47.32</td>
<td>0.021</td>
<td>-0.292</td>
<td>0.005</td>
<td>15.0</td>
<td>45.80</td>
<td>464</td>
</tr>
<tr>
<td>BRU1 mu.12</td>
<td>47.10</td>
<td>0.023</td>
<td>-0.040</td>
<td>0.004</td>
<td>15.4</td>
<td>45.81</td>
<td>464</td>
</tr>
</tbody>
</table>

Note: No. in brackets is IGNS catalogue number. Grid reference for NZ Map series
NZMS250 follows location. mu. = muscovite, bi. = biotite