GSA Data Repository Item # 8605

Title of article Stable Isotopes in Late Middle Eocene to Oligocene Foraminifera

Author(s) Lloyd D. Keigwin and Bruce H. Corliss

see Bulletin v. 97, p. 335 - 345

Contents 23 pages

Appendix I - Eocene-Oligocene Data Tables

Appendix II - Paleodepth determination
Appendix 1. EOCENE-OLIGOCENE DATA TABLE

CONTENTS

<table>
<thead>
<tr>
<th>Pages</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DSDP 19</td>
</tr>
<tr>
<td>1-3</td>
<td>363</td>
</tr>
<tr>
<td>3-5</td>
<td>219</td>
</tr>
<tr>
<td>5</td>
<td>277</td>
</tr>
<tr>
<td>6</td>
<td>St. Stephen's Quarry</td>
</tr>
<tr>
<td>6-8</td>
<td>DSDP 253</td>
</tr>
<tr>
<td>9-10</td>
<td>292</td>
</tr>
<tr>
<td>10-11</td>
<td>Eureka 67-128</td>
</tr>
<tr>
<td>11-15</td>
<td>DSDP 77B</td>
</tr>
<tr>
<td>15</td>
<td>116</td>
</tr>
<tr>
<td>15</td>
<td>167</td>
</tr>
<tr>
<td>16</td>
<td>401</td>
</tr>
<tr>
<td>16</td>
<td>357</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>16-17</td>
<td>214</td>
</tr>
<tr>
<td>17</td>
<td>548A</td>
</tr>
<tr>
<td>18</td>
<td>362A</td>
</tr>
<tr>
<td>19</td>
<td>366</td>
</tr>
<tr>
<td>19</td>
<td>94</td>
</tr>
<tr>
<td>20</td>
<td>217</td>
</tr>
<tr>
<td>20</td>
<td>612</td>
</tr>
<tr>
<td>21</td>
<td>592</td>
</tr>
<tr>
<td>21</td>
<td>593</td>
</tr>
</tbody>
</table>
DSDP 19

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>O. tener</th>
<th>G. subglobosa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>13 δ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ O δ C</td>
<td></td>
</tr>
<tr>
<td>4-5, 120</td>
<td>63.90</td>
<td>1.59</td>
<td>-0.12</td>
</tr>
<tr>
<td>4-6, 120</td>
<td>65.40</td>
<td>1.70</td>
<td>0.15</td>
</tr>
<tr>
<td>5-1, 60</td>
<td>76.20</td>
<td>1.78</td>
<td>-0.02</td>
</tr>
<tr>
<td>5-1, 120</td>
<td>76.80</td>
<td>1.79</td>
<td>0.59</td>
</tr>
<tr>
<td>5-2, 63</td>
<td>77.73</td>
<td>1.30</td>
<td>0.49</td>
</tr>
<tr>
<td>5-4, 64</td>
<td>80.74</td>
<td>1.09</td>
<td>0.19</td>
</tr>
<tr>
<td>5-4, 121</td>
<td>81.30</td>
<td>1.36</td>
<td>0.35</td>
</tr>
<tr>
<td>5-5, 60</td>
<td>82.20</td>
<td>1.12</td>
<td>0.14</td>
</tr>
<tr>
<td>5-5, 120</td>
<td>82.80</td>
<td>1.16</td>
<td>0.58</td>
</tr>
<tr>
<td>5-6, 60</td>
<td>83.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6, 120</td>
<td>84.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-1, 61</td>
<td>86.61</td>
<td>0.86</td>
<td>0.17</td>
</tr>
<tr>
<td>6-2, 60</td>
<td>88.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-3, 62</td>
<td>89.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-5, 60</td>
<td>92.60</td>
<td>1.25</td>
<td>0.84</td>
</tr>
<tr>
<td>6-6, 60</td>
<td>94.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-3, 60</td>
<td>98.60</td>
<td>0.84</td>
<td>0.17</td>
</tr>
<tr>
<td>7-5, 50</td>
<td>101.60</td>
<td>0.50</td>
<td>-0.14</td>
</tr>
<tr>
<td>8-1, 60</td>
<td>104.90</td>
<td>0.85</td>
<td>0.55</td>
</tr>
<tr>
<td>8-3, 60</td>
<td>107.90</td>
<td>0.18</td>
<td>0.27</td>
</tr>
<tr>
<td>8-5, 60</td>
<td>110.90</td>
<td>0.68</td>
<td>-0.16</td>
</tr>
<tr>
<td>9-1, 60</td>
<td>114.00</td>
<td>0.47</td>
<td>0.11</td>
</tr>
<tr>
<td>9-3, 65</td>
<td>117.05</td>
<td>0.63</td>
<td>0.16</td>
</tr>
<tr>
<td>9-5, 60</td>
<td>120.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-5, 60</td>
<td>130.40</td>
<td>0.47</td>
<td>0.19</td>
</tr>
</tbody>
</table>

DSDP 363

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>O. tener</th>
<th>C. ungerianus</th>
<th>B. alazanensis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>13 δ</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ O δ C</td>
<td></td>
<td>δ O δ C</td>
</tr>
<tr>
<td>2-4, 63</td>
<td>55.13</td>
<td>1.62</td>
<td>0.17</td>
<td>1.24</td>
</tr>
<tr>
<td>3-1, 67</td>
<td>69.67</td>
<td>1.68</td>
<td>-1.03</td>
<td>1.32</td>
</tr>
<tr>
<td>3-5, 67</td>
<td>75.67</td>
<td>1.82</td>
<td>-0.89</td>
<td>1.65</td>
</tr>
<tr>
<td>4-3, 66</td>
<td>91.66</td>
<td>1.90</td>
<td>-0.47</td>
<td>1.39</td>
</tr>
<tr>
<td>5-2, 95</td>
<td>109.45</td>
<td>1.84</td>
<td>-0.92</td>
<td>1.48</td>
</tr>
<tr>
<td>5-5, 67</td>
<td>113.67</td>
<td>1.68</td>
<td>-0.30</td>
<td>1.24</td>
</tr>
</tbody>
</table>
DSDP 363 (Cont'd)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>O. tener</th>
<th>C. ungerianus</th>
<th>B. alazanensis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ O</td>
<td>δ C</td>
<td>δ O</td>
</tr>
<tr>
<td>6-1,100</td>
<td>127.00</td>
<td>1.93</td>
<td>0.26</td>
<td>1.55</td>
</tr>
<tr>
<td>6-4, 66</td>
<td>131.16</td>
<td>1.64</td>
<td>0.21</td>
<td>1.30</td>
</tr>
<tr>
<td>6 cc</td>
<td>132.50</td>
<td>1.57</td>
<td>-0.13</td>
<td>1.65</td>
</tr>
<tr>
<td>7-1, 65</td>
<td>145.65</td>
<td>1.51</td>
<td>-0.14</td>
<td>1.18</td>
</tr>
<tr>
<td>8-1, 76</td>
<td>164.76</td>
<td>1.82</td>
<td>0.17</td>
<td>1.62</td>
</tr>
<tr>
<td>8-2, 65</td>
<td>166.15</td>
<td>2.11</td>
<td>0.23</td>
<td>1.63</td>
</tr>
<tr>
<td>8-2,136</td>
<td>166.86</td>
<td>1.36</td>
<td>-0.07</td>
<td>1.76</td>
</tr>
<tr>
<td>8 cc</td>
<td>167.50</td>
<td>2.01</td>
<td>0.44</td>
<td>1.78</td>
</tr>
<tr>
<td>9-2, 22</td>
<td>184.72</td>
<td>1.28</td>
<td>0.06</td>
<td>1.25</td>
</tr>
<tr>
<td>9-2, 46</td>
<td>184.96</td>
<td>1.07</td>
<td>0.11</td>
<td>1.48</td>
</tr>
<tr>
<td>9-2, 96</td>
<td>185.46</td>
<td>1.21</td>
<td>0.06</td>
<td>1.33</td>
</tr>
<tr>
<td>9-2,134</td>
<td>185.84</td>
<td>1.26</td>
<td>0.03</td>
<td>1.23</td>
</tr>
<tr>
<td>9-3, 50</td>
<td>186.50</td>
<td>1.19</td>
<td>-0.05</td>
<td>1.09</td>
</tr>
<tr>
<td>9-3, 84</td>
<td>186.84</td>
<td>0.93</td>
<td>0.09</td>
<td>1.14</td>
</tr>
<tr>
<td>9-3,107</td>
<td>187.07</td>
<td>1.08</td>
<td>-0.01</td>
<td>1.10</td>
</tr>
<tr>
<td>9-3,124</td>
<td>187.24</td>
<td>1.14</td>
<td>0.07</td>
<td>1.03</td>
</tr>
<tr>
<td>9-4, 48</td>
<td>187.98</td>
<td>1.46</td>
<td>0.00</td>
<td>1.14</td>
</tr>
<tr>
<td>9-4,100</td>
<td>188.50</td>
<td>0.84</td>
<td>-0.36</td>
<td>0.74</td>
</tr>
<tr>
<td>9-4,124</td>
<td>188.74</td>
<td>0.99</td>
<td>-0.35</td>
<td>0.90</td>
</tr>
<tr>
<td>10-1, 55</td>
<td>202.55</td>
<td>1.24</td>
<td>-0.82</td>
<td>1.32</td>
</tr>
<tr>
<td>10-3, 97</td>
<td>205.97</td>
<td>0.85</td>
<td>0.22</td>
<td>0.79</td>
</tr>
<tr>
<td>10-4, 61</td>
<td>207.11</td>
<td>1.09</td>
<td>0.08</td>
<td>0.68</td>
</tr>
<tr>
<td>10-5,102</td>
<td>209.02</td>
<td>0.85</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>10 cc</td>
<td>211.50</td>
<td>0.40</td>
<td>0.29</td>
<td>0.33</td>
</tr>
<tr>
<td>11-6, 69</td>
<td>229.19</td>
<td>0.39</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>12-4, 67</td>
<td>245.17</td>
<td>-0.21</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>13-1, 85</td>
<td>259.85</td>
<td>-0.38</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>13-4, 67</td>
<td>264.17</td>
<td>-0.55</td>
<td>-0.06</td>
<td></td>
</tr>
<tr>
<td>14-1, 67</td>
<td>278.67</td>
<td>-0.46</td>
<td>-0.60</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth</th>
<th>Pseudohastigerina</th>
<th>Pseudohastigerina</th>
<th>C. cubensis</th>
<th>G. ampliapertura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(m)</td>
<td>124 - 180μm</td>
<td><124μm</td>
<td>184 - 130μm</td>
<td>180 - 300μm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>13</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ O</td>
<td>δ C</td>
<td>δ O</td>
<td>δ C</td>
</tr>
<tr>
<td>6 cc</td>
<td>132.50</td>
<td>-0.05</td>
<td>1.35</td>
<td>0.41</td>
<td>1.59</td>
</tr>
<tr>
<td>7-1, 65</td>
<td>145.65</td>
<td>0.11</td>
<td>1.51</td>
<td>0.47</td>
<td>1.58</td>
</tr>
<tr>
<td>8-2, 65</td>
<td>166.15</td>
<td>0.19</td>
<td>1.29</td>
<td>0.07</td>
<td>1.75</td>
</tr>
<tr>
<td>8 cc</td>
<td>167.50</td>
<td>-0.01</td>
<td>1.59</td>
<td>0.34</td>
<td>1.66</td>
</tr>
<tr>
<td>9-2, 22</td>
<td>184.72</td>
<td>-0.13</td>
<td>1.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-2, 96</td>
<td>185.46</td>
<td>-0.27</td>
<td>1.86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DSDP 363 (Cont'd)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>Pseudohastigerina</th>
<th>Pseudohastigerina</th>
<th>C. cubensis</th>
<th>G. ampliapertura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>124 - 180µm</td>
<td><124µm</td>
<td><124µm</td>
<td>180 - 300µm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ O</td>
<td>δ C</td>
<td>δ O</td>
<td>δ C</td>
</tr>
<tr>
<td>9-2,134</td>
<td>185.84</td>
<td>18</td>
<td>13</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>9-3, 50</td>
<td>186.50</td>
<td>-0.05</td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-3, 84</td>
<td>186.84</td>
<td>-0.41</td>
<td>1.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-3,107</td>
<td>187.07</td>
<td>-0.45</td>
<td>1.67</td>
<td>-0.49</td>
<td>1.88</td>
</tr>
<tr>
<td>9-3,124</td>
<td>187.24</td>
<td>-0.35</td>
<td>1.53</td>
<td>-0.29</td>
<td>1.83</td>
</tr>
<tr>
<td>9-4,100</td>
<td>188.50</td>
<td>-0.43</td>
<td>1.16</td>
<td>-0.69</td>
<td>1.34</td>
</tr>
<tr>
<td>10-1, 55</td>
<td>202.55</td>
<td>-0.15</td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-3, 97</td>
<td>205.97</td>
<td>0.16</td>
<td>1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-4, 61</td>
<td>207.11</td>
<td>-0.09</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-5,102</td>
<td>209.02</td>
<td>0.04</td>
<td>1.68</td>
<td>0.17</td>
<td>1.47</td>
</tr>
<tr>
<td>10-6, 99</td>
<td>210.49</td>
<td>0.29</td>
<td>1.91</td>
<td>0.31</td>
<td>1.69</td>
</tr>
<tr>
<td>10 cc</td>
<td>211.50</td>
<td>-0.11</td>
<td>1.46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DSDP 219

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>O. tener</th>
<th>C. subglobosa</th>
<th>C. ungerianus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ O</td>
<td>δ C</td>
<td>δ O</td>
</tr>
<tr>
<td>15-1, 64</td>
<td>156.64</td>
<td>1.50</td>
<td>0.08</td>
<td>1.58</td>
</tr>
<tr>
<td>15-3, 57</td>
<td>159.57</td>
<td>1.26</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>15-6, 54</td>
<td>163.54</td>
<td>1.28</td>
<td>-0.40</td>
<td>1.57</td>
</tr>
<tr>
<td>16-1, 42</td>
<td>165.42</td>
<td>1.75</td>
<td>0.44</td>
<td>1.80</td>
</tr>
<tr>
<td>16-2, 63</td>
<td>167.13</td>
<td>1.19</td>
<td>0.06</td>
<td>1.42</td>
</tr>
<tr>
<td>16-3, 63</td>
<td>168.63</td>
<td>1.33</td>
<td>0.18</td>
<td>1.50</td>
</tr>
<tr>
<td>16-4, 43</td>
<td>169.93</td>
<td>1.20</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>16-4,104</td>
<td>170.54</td>
<td>1.03</td>
<td>-0.30</td>
<td></td>
</tr>
<tr>
<td>16-5, 63</td>
<td>171.63</td>
<td>0.65</td>
<td>-0.10</td>
<td>1.20</td>
</tr>
<tr>
<td>16-6, 76</td>
<td>173.16</td>
<td>0.95</td>
<td>-0.06</td>
<td>1.16</td>
</tr>
<tr>
<td>17-1, 89</td>
<td>174.89</td>
<td>1.27</td>
<td>0.21</td>
<td>1.07</td>
</tr>
<tr>
<td>17-2, 44</td>
<td>175.94</td>
<td>0.90</td>
<td>0.08</td>
<td>1.32</td>
</tr>
<tr>
<td>17-3, 61</td>
<td>177.61</td>
<td>1.20</td>
<td>0.40</td>
<td>1.45</td>
</tr>
<tr>
<td>17-4, 61</td>
<td>179.11</td>
<td>0.78</td>
<td>0.15</td>
<td>1.17</td>
</tr>
<tr>
<td>17-4,102</td>
<td>179.52</td>
<td>0.92</td>
<td>0.37</td>
<td>0.94</td>
</tr>
<tr>
<td>17-5, 41</td>
<td>180.41</td>
<td>0.73</td>
<td>0.60</td>
<td>1.13</td>
</tr>
<tr>
<td>17-5, 61</td>
<td>180.61</td>
<td>0.95</td>
<td>0.23</td>
<td>1.93</td>
</tr>
</tbody>
</table>
DSDP 219 Cont'd

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>O. tener</th>
<th>C. subglobosa</th>
<th>C. ungerianus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>δO</td>
<td>δC</td>
<td>δO</td>
</tr>
<tr>
<td>18-1, 61</td>
<td>183.61</td>
<td>1.15</td>
<td>-0.03</td>
<td>1.25</td>
</tr>
<tr>
<td>18-2, 61</td>
<td>185.11</td>
<td>1.27</td>
<td>-0.04</td>
<td>1.29</td>
</tr>
<tr>
<td>18-4, 61</td>
<td>188.11</td>
<td>0.89</td>
<td>0.42</td>
<td>1.45</td>
</tr>
<tr>
<td>18-5, 61</td>
<td>189.61</td>
<td>1.28</td>
<td>0.19</td>
<td>1.17</td>
</tr>
<tr>
<td>18-6, 61</td>
<td>191.11</td>
<td>0.80</td>
<td>0.08</td>
<td>1.15</td>
</tr>
<tr>
<td>19-1, 58</td>
<td>192.58</td>
<td>0.77</td>
<td>0.15</td>
<td>1.16</td>
</tr>
<tr>
<td>19-2, 61</td>
<td>194.11</td>
<td>0.60</td>
<td>0.71</td>
<td>0.45</td>
</tr>
<tr>
<td>19-3, 61</td>
<td>195.61</td>
<td>0.77</td>
<td>0.72</td>
<td>0.35</td>
</tr>
<tr>
<td>19-4, 61</td>
<td>197.11</td>
<td>1.00</td>
<td>0.12</td>
<td>0.67</td>
</tr>
<tr>
<td>19-5, 61</td>
<td>198.61</td>
<td>0.37</td>
<td>0.21</td>
<td>0.67</td>
</tr>
<tr>
<td>19-6, 61</td>
<td>200.11</td>
<td>-0.75</td>
<td>0.05</td>
<td>1.09</td>
</tr>
<tr>
<td>20-1, 122</td>
<td>202.22</td>
<td>0.75</td>
<td>-0.06</td>
<td>0.26</td>
</tr>
<tr>
<td>20-3, 68</td>
<td>204.68</td>
<td>0.66</td>
<td>0.27</td>
<td>0.66</td>
</tr>
</tbody>
</table>

B. alaza-nensis

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>B. alaza-nensis</th>
<th>Chiloquem-belina</th>
<th>Chiloquem-belina</th>
<th>Pseudohastigerina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>δO</td>
<td>δC</td>
<td>δO</td>
<td>δC</td>
</tr>
<tr>
<td>15-1, 64</td>
<td>156.64</td>
<td>-0.28</td>
<td>0.86</td>
<td>-0.59</td>
<td>0.77</td>
</tr>
<tr>
<td>15-3, 57</td>
<td>159.57</td>
<td>-0.14</td>
<td>0.75</td>
<td>-0.04</td>
<td>0.71</td>
</tr>
<tr>
<td>16-2, 63</td>
<td>167.13</td>
<td>1.28</td>
<td>0.07</td>
<td>0.19</td>
<td>0.55</td>
</tr>
<tr>
<td>16-3, 63</td>
<td>168.63</td>
<td>-0.18</td>
<td>0.59</td>
<td>-0.45</td>
<td>0.70</td>
</tr>
<tr>
<td>16-4, 43</td>
<td>169.93</td>
<td>-0.19*</td>
<td>0.58</td>
<td>0.31</td>
<td>0.66</td>
</tr>
<tr>
<td>16-4, 104</td>
<td>170.54</td>
<td>-0.45</td>
<td>0.70</td>
<td>1.11</td>
<td>0.77</td>
</tr>
<tr>
<td>16-6, 76</td>
<td>173.16</td>
<td>-0.27</td>
<td>1.25</td>
<td>-0.19</td>
<td>0.84</td>
</tr>
<tr>
<td>18-3, 61</td>
<td>186.61</td>
<td>-0.27</td>
<td>1.25</td>
<td>-0.19</td>
<td>0.84</td>
</tr>
<tr>
<td>18-4, 61</td>
<td>188.11</td>
<td>-0.27</td>
<td>1.25</td>
<td>-0.19</td>
<td>0.84</td>
</tr>
<tr>
<td>18-5, 61</td>
<td>189.61</td>
<td>-0.27</td>
<td>1.25</td>
<td>-0.19</td>
<td>0.84</td>
</tr>
<tr>
<td>19-2, 61</td>
<td>194.11</td>
<td>-0.27</td>
<td>1.25</td>
<td>-0.19</td>
<td>0.84</td>
</tr>
<tr>
<td>19-4, 61</td>
<td>197.11</td>
<td>-0.27</td>
<td>1.25</td>
<td>-0.19</td>
<td>0.84</td>
</tr>
</tbody>
</table>

* = C. cubensis
DSDP 219 (Cont'd)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>Pseudohastigerina >150µm</th>
<th>G. ampliapertura 180 - 300µm</th>
<th>C. unicava 124 - 180µm</th>
<th>C. unicava 180 - 300µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-1, 64</td>
<td>156.64</td>
<td>0.00</td>
<td>0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-3, 57</td>
<td>159.57</td>
<td>-0.21</td>
<td>1.07</td>
<td>1.02</td>
<td>0.42</td>
</tr>
<tr>
<td>15-6, 54</td>
<td>163.54</td>
<td>-0.27</td>
<td>0.74</td>
<td></td>
<td>0.97</td>
</tr>
<tr>
<td>16-4, 43</td>
<td>169.93</td>
<td>-0.20</td>
<td>0.98</td>
<td>0.80</td>
<td>0.67</td>
</tr>
<tr>
<td>16-4, 104</td>
<td>170.54</td>
<td>-0.39</td>
<td>1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-6, 76</td>
<td>173.16</td>
<td>-0.40</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DSDP 277

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>G. subglobosa</th>
<th>G. angiporoides 180 - 300µm</th>
<th>Chiloguembelina</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-2, 98</td>
<td>161.48</td>
<td>1.58</td>
<td>0.85</td>
<td>0.29*</td>
</tr>
<tr>
<td>18-3, 103</td>
<td>163.03</td>
<td>1.68</td>
<td>0.81</td>
<td>0.42*</td>
</tr>
<tr>
<td>18-3, 140</td>
<td>163.40</td>
<td>1.63</td>
<td>1.14</td>
<td>1.49</td>
</tr>
<tr>
<td>19-2, 100</td>
<td>171.00</td>
<td>1.64</td>
<td>1.11</td>
<td>1.20</td>
</tr>
<tr>
<td>19-2, 102</td>
<td>171.02</td>
<td>1.78</td>
<td>1.14</td>
<td>1.20</td>
</tr>
<tr>
<td>19-2, 140</td>
<td>171.40</td>
<td>1.78</td>
<td>1.14</td>
<td>1.72</td>
</tr>
<tr>
<td>19cc</td>
<td>172.00</td>
<td>1.78</td>
<td>1.14</td>
<td>1.72</td>
</tr>
<tr>
<td>20-3, 140</td>
<td>182.40</td>
<td>1.17</td>
<td>0.73</td>
<td>1.44</td>
</tr>
<tr>
<td>20-4, 140</td>
<td>183.90</td>
<td>0.20</td>
<td>0.96</td>
<td>0.05</td>
</tr>
<tr>
<td>20-6, 140</td>
<td>186.90</td>
<td>0.09</td>
<td>0.77</td>
<td>1.44</td>
</tr>
<tr>
<td>21-2, 102</td>
<td>190.02</td>
<td>0.36</td>
<td>1.01</td>
<td>1.77</td>
</tr>
<tr>
<td>22-2, 98</td>
<td>197.98</td>
<td>0.22</td>
<td>1.26</td>
<td>1.77</td>
</tr>
<tr>
<td>23-1, 140</td>
<td>207.90</td>
<td>0.76</td>
<td>0.82</td>
<td>1.47</td>
</tr>
<tr>
<td>23-2, 103</td>
<td>209.03</td>
<td>0.76</td>
<td>0.82</td>
<td>1.47</td>
</tr>
</tbody>
</table>

* = C. cubensis
ST. STEPHEN'S QUARRY

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth* (m)</th>
<th>Uvigerina</th>
<th>Cibicidoides</th>
<th>Pseudohastigerina</th>
<th>C. cubensis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

| | 18 | 13 | 0 | 0 | 0 |
| | 0 | C | 0 | 0 | 0 |

	25	-0.35	0.12	-0.58	0.59
	24	-0.13	-0.16	-0.56	0.45
	15	2.13	0.18	0.10	0.10
	14	1.98	0.26	0.35	0.35
	13	1.83	0.28	0.07	0.30
	12	1.68	0.27	0.31	0.38
	11	1.52	-0.88	-1.35	-1.35
	10	1.37	-0.45	-0.60	-1.61
	9	1.17	-0.07	-1.09	-1.64
	8	1.07	-0.09	-0.26	-1.64
	7	.91	-0.19	-0.13	-1.64
	6	.76	-0.24		-1.64
	5	.61	-0.42	0.02	-1.64
	4	.46	-0.95	-1.51	-1.64
	3	.30	-0.89	-0.53	-1.64
	2	.15	-0.69	-0.11	-1.64

* height above Pachuta-Shubuta contact.

DSDP 253

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>O. tener</th>
<th>C. ungerianus</th>
<th>G. subglobosa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18</td>
<td>13</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<p>| | 11-1, 97 | 95.47 | 1.61 | 0.19 | 1.21 | 0.67 |
| | 11-3, 97 | 98.47 | 1.59 | 0.19 | 1.52 | 0.83 |
| | 11-6, 97 | 102.97 | 1.37 | 0.32 | 1.16 | 0.88 |
| | 12-4,139 | 109.89 | 1.61 | 0.60 | 1.31 | 1.15 |
| | 12-5, 40 | 110.40 | 1.51 | 0.64 | 1.34 | 1.35 |
| | 12-5,115 | 111.15 | 1.57 | 0.62 | 1.37 | 1.30 |
| | 12-6,100 | 112.50 | 1.93 | 0.78 | 1.47 | 1.32 |
| | 12cc | 113.50 | 1.51 | 1.01 | 1.51 | 1.38 |
| | 13-1, 10 | 113.60 | 1.25 | 0.48 | | |
| | 13-1,120 | 114.70 | 1.14 | 0.76 | 1.11 | 1.30 |</p>
<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>O. tener</th>
<th>C. ungerianus</th>
<th>G. subglobosa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ 0</td>
<td>δ C</td>
<td>δ 0</td>
</tr>
<tr>
<td>13-2, 21</td>
<td>115.21</td>
<td>0.89</td>
<td>0.48</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.23</td>
<td>0.55</td>
<td>1.07</td>
</tr>
<tr>
<td>13-2, 125</td>
<td>116.25</td>
<td>1.03</td>
<td>0.35</td>
<td>0.93</td>
</tr>
<tr>
<td>13-4, 123</td>
<td>119.23</td>
<td>1.05</td>
<td>0.47</td>
<td>0.96</td>
</tr>
<tr>
<td>13-5, 60</td>
<td>120.10</td>
<td>0.90</td>
<td>0.49</td>
<td>0.96</td>
</tr>
<tr>
<td>13-5, 123</td>
<td>120.73</td>
<td>0.89</td>
<td>0.52</td>
<td>0.86</td>
</tr>
<tr>
<td>13-6, 47</td>
<td>121.47</td>
<td>1.13</td>
<td>0.65</td>
<td>0.88</td>
</tr>
<tr>
<td>13-6, 117</td>
<td>122.17</td>
<td>0.94</td>
<td>0.70</td>
<td>0.66</td>
</tr>
<tr>
<td>14-1, 61</td>
<td>123.61</td>
<td>0.55</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>14-2, 117</td>
<td>124.17</td>
<td>0.55</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>14-2, 61</td>
<td>125.11</td>
<td>0.89</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>14-2, 100</td>
<td>125.50</td>
<td>0.92</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>14-3, 63</td>
<td>126.13</td>
<td>0.87</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>14-3, 122</td>
<td>127.22</td>
<td>0.95</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>14-4, 62</td>
<td>128.12</td>
<td>0.95</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>14-4, 122</td>
<td>128.72</td>
<td>0.66</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>14-5, 60</td>
<td>129.60</td>
<td>0.67</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>14-5, 122</td>
<td>130.22</td>
<td>1.02</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>14-6, 99</td>
<td>130.99</td>
<td>0.84</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>16-1, 138</td>
<td>143.38</td>
<td>0.35</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>16-5, 37</td>
<td>148.37</td>
<td>0.59</td>
<td>0.93</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>C. cubensis</th>
<th>Pseudohastigerina</th>
<th>Pseudohastigerina</th>
<th>G. ampliapertura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>13</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ 0</td>
<td>δ C</td>
<td>δ 0</td>
<td>δ C</td>
</tr>
<tr>
<td>12-4, 139</td>
<td>109.89</td>
<td>0.96</td>
<td>1.39</td>
<td>0.96</td>
<td>1.51</td>
</tr>
<tr>
<td>12-5, 40</td>
<td>110.40</td>
<td>0.91</td>
<td>1.38</td>
<td>0.91</td>
<td>1.61</td>
</tr>
<tr>
<td>12-5, 115</td>
<td>111.15</td>
<td>1.09</td>
<td>1.44</td>
<td>1.09</td>
<td>1.61</td>
</tr>
<tr>
<td>12-6, 100</td>
<td>112.50</td>
<td>1.01</td>
<td>1.43</td>
<td>1.03</td>
<td>1.61</td>
</tr>
<tr>
<td>12cc</td>
<td>113.50</td>
<td>1.00</td>
<td>1.61</td>
<td>0.98</td>
<td>1.12</td>
</tr>
<tr>
<td>13-1, 10</td>
<td>113.60</td>
<td>0.70</td>
<td>1.63</td>
<td>0.98</td>
<td>1.12</td>
</tr>
<tr>
<td>13-1, 120</td>
<td>114.70</td>
<td>0.75</td>
<td>1.59</td>
<td>0.79</td>
<td>1.62</td>
</tr>
<tr>
<td>13-2, 21</td>
<td>115.21</td>
<td>0.66</td>
<td>1.56</td>
<td>0.68</td>
<td>1.59</td>
</tr>
<tr>
<td>13-2, 125</td>
<td>116.25</td>
<td>0.67</td>
<td>1.31</td>
<td>0.61</td>
<td>1.29</td>
</tr>
<tr>
<td>13-3, 30</td>
<td>116.80</td>
<td>0.50</td>
<td>1.37</td>
<td>0.51</td>
<td>1.25</td>
</tr>
<tr>
<td>13-3, 123</td>
<td>117.73</td>
<td>0.56</td>
<td>1.25</td>
<td>0.45</td>
<td>1.29</td>
</tr>
</tbody>
</table>
DSDP 253 (Cont'd)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>C. cubensis</th>
<th>Pseudohastigerina</th>
<th>Pseudohastigerina</th>
<th>G. ampliapertura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><124μm</td>
<td><124μm</td>
<td>124 - 180μm</td>
<td>180 - 300μm</td>
</tr>
<tr>
<td>13-4, 60</td>
<td>118.60</td>
<td>0.55</td>
<td>1.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-4,123</td>
<td>119.23</td>
<td>0.49</td>
<td>1.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-5, 60</td>
<td>120.10</td>
<td>0.49</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-5,123</td>
<td>120.73</td>
<td>0.52</td>
<td>1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-6,117</td>
<td>122.17</td>
<td>0.52</td>
<td>1.48</td>
<td>0.57</td>
<td>1.40</td>
</tr>
<tr>
<td>14-1, 61</td>
<td>123.61</td>
<td>0.26</td>
<td>1.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-1,117</td>
<td>124.17</td>
<td>0.37</td>
<td>1.50</td>
<td>0.39</td>
<td>1.38</td>
</tr>
<tr>
<td>14-2, 61</td>
<td>125.11</td>
<td>0.40</td>
<td>1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-2,100</td>
<td>125.50</td>
<td>0.41</td>
<td>1.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-3, 63</td>
<td>126.13</td>
<td>0.41</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-3,122</td>
<td>127.22</td>
<td>0.46</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-4, 62</td>
<td>128.12</td>
<td>0.35</td>
<td>1.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-4,122</td>
<td>128.72</td>
<td>0.40</td>
<td>1.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-5, 60</td>
<td>129.60</td>
<td>0.29</td>
<td>1.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-5,122</td>
<td>130.22</td>
<td>0.37</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>G. cerroazulensis</th>
<th>S. cf angiospermoides</th>
<th>Hantkenina</th>
<th>S. linsperata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><180μm</td>
<td>124 - 180μm</td>
<td>180 - 300μm</td>
<td><180μm</td>
</tr>
<tr>
<td>13-2,125</td>
<td>116.25</td>
<td></td>
<td></td>
<td></td>
<td>0.95</td>
</tr>
<tr>
<td>13-4, 60</td>
<td>118.60</td>
<td>0.45</td>
<td>1.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-2,100</td>
<td>125.50</td>
<td>0.58</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-3, 63</td>
<td>126.13</td>
<td>0.22</td>
<td>1.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-3,122</td>
<td>127.22</td>
<td>0.49</td>
<td>1.39</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DSDP 292

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>O. tener</th>
<th>C. ungerianus</th>
<th>Pseudohastigerina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>δ 0</td>
<td>δ C</td>
<td>δ 0</td>
</tr>
<tr>
<td>34-1, 99</td>
<td>311.49</td>
<td>-0.61</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>34-1, 148</td>
<td>311.98</td>
<td>-0.64</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>34-2, 50</td>
<td>312.50</td>
<td>-0.52</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>34-2, 99</td>
<td>312.99</td>
<td>-0.61</td>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td>34-2, 148</td>
<td>313.48</td>
<td>-0.64</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>35-1, 87</td>
<td>320.87</td>
<td>0.96</td>
<td>1.28</td>
<td>-0.85</td>
</tr>
<tr>
<td>35-1, 99</td>
<td>320.99</td>
<td>-0.99</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>35-2, 36</td>
<td>321.86</td>
<td>-0.96</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>35-2, 101</td>
<td>322.51</td>
<td>-0.95</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>35-2, 141</td>
<td>322.91</td>
<td>-0.75</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>35-3, 95</td>
<td>323.95</td>
<td>-0.91</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>35-3, 147</td>
<td>324.47</td>
<td>-0.63</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>36-1, 89</td>
<td>330.39</td>
<td>-0.67</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>36-1, 145</td>
<td>330.95</td>
<td>-0.59</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>39-1, 89</td>
<td>358.89</td>
<td>0.80</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>39-2, 36</td>
<td>359.86</td>
<td>0.93</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>39-3, 53</td>
<td>361.53</td>
<td>0.80</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>39-3, 107</td>
<td>362.07</td>
<td>0.92</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>39cc</td>
<td>363.00</td>
<td>0.96</td>
<td>0.23</td>
<td></td>
</tr>
</tbody>
</table>

Sample Depth (m) Pseudohastigerina C. cubensis Chilouquembe-lina sp. G. ampliapertura

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>Pseudohastigerina</th>
<th>C. cubensis</th>
<th>Chilouquembe-lina sp.</th>
<th>G. ampliapertura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>124 - 180μm</td>
<td><124μm</td>
<td><124μm</td>
<td>180 - 300μm</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>13</td>
<td>18</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>δ 0</td>
<td>δ C</td>
<td>δ 0</td>
<td>δ C</td>
<td>δ 0</td>
<td>δ C</td>
</tr>
<tr>
<td>34-1, 99</td>
<td>311.49</td>
<td>-0.81</td>
<td>1.18</td>
<td>-0.80</td>
<td>1.09</td>
</tr>
<tr>
<td>34-1, 148</td>
<td>311.98</td>
<td>-0.80</td>
<td>1.09</td>
<td>-0.66</td>
<td>1.58</td>
</tr>
<tr>
<td>34-2, 50</td>
<td>312.50</td>
<td>-0.66</td>
<td>1.58</td>
<td>-0.61</td>
<td>1.67</td>
</tr>
<tr>
<td>34-2, 99</td>
<td>312.99</td>
<td>-0.61</td>
<td>1.67</td>
<td>-0.77</td>
<td>1.65</td>
</tr>
<tr>
<td>34-2, 148</td>
<td>313.48</td>
<td>-0.77</td>
<td>1.65</td>
<td>-1.00</td>
<td>1.97</td>
</tr>
<tr>
<td>35-1, 87</td>
<td>320.87</td>
<td>-0.64</td>
<td>1.31</td>
<td>-1.33</td>
<td>0.72</td>
</tr>
<tr>
<td>35-2, 141</td>
<td>322.91</td>
<td>-0.89</td>
<td>1.08</td>
<td>-0.88</td>
<td>0.79</td>
</tr>
<tr>
<td>35-3, 95</td>
<td>323.95</td>
<td>-0.74</td>
<td>0.86</td>
<td>-0.68</td>
<td>1.05</td>
</tr>
<tr>
<td>35-3, 147</td>
<td>324.47</td>
<td>-0.75</td>
<td>1.07</td>
<td>-0.81</td>
<td>0.83</td>
</tr>
<tr>
<td>36-1, 89</td>
<td>330.39</td>
<td>-0.74</td>
<td>1.39</td>
<td>-0.82</td>
<td>1.28</td>
</tr>
<tr>
<td>36-1, 145</td>
<td>330.95</td>
<td>-0.56</td>
<td>1.46</td>
<td>-0.83</td>
<td>1.26</td>
</tr>
<tr>
<td>36-2, 89</td>
<td>331.89</td>
<td>-1.20</td>
<td>1.20</td>
<td>-1.20</td>
<td>1.20</td>
</tr>
</tbody>
</table>
DSDP 292 (cont'd)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>Hantkenina</th>
<th>G. ceroazulensis</th>
<th>C. unicava >180μm</th>
<th>C. unicava >300μm</th>
<th>C. unicava 124 - 180μm</th>
<th>C. unicava 180 - 300μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>34-1,148</td>
<td>311.98</td>
<td>1.02</td>
<td>1.26</td>
<td>1.15</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34-2, 50</td>
<td>312.50</td>
<td>1.28</td>
<td>1.36</td>
<td>0.61</td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34-2, 99</td>
<td>312.99</td>
<td>1.37</td>
<td>1.45</td>
<td>0.66</td>
<td>1.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34-2,148</td>
<td>313.48</td>
<td>1.37</td>
<td>1.25</td>
<td>0.98</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-1, 87</td>
<td>320.87</td>
<td>0.33</td>
<td>1.44</td>
<td>0.47</td>
<td>1.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-2,141</td>
<td>322.91</td>
<td>-0.92</td>
<td>1.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-3, 95</td>
<td>323.95</td>
<td>-1.19</td>
<td>1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-3,147</td>
<td>324.47</td>
<td>-0.87</td>
<td>1.23</td>
<td>-0.89</td>
<td>1.44</td>
<td>0.65</td>
<td>0.91</td>
</tr>
<tr>
<td>36-1, 89</td>
<td>330.39</td>
<td>-0.54</td>
<td>1.75</td>
<td>-0.74</td>
<td>1.58</td>
<td>0.70</td>
<td>0.97</td>
</tr>
<tr>
<td>36-1,145</td>
<td>330.95</td>
<td>-0.85</td>
<td>1.86</td>
<td>-0.69</td>
<td>1.60</td>
<td>0.59</td>
<td>0.83</td>
</tr>
</tbody>
</table>

EUREKA 67-128

<table>
<thead>
<tr>
<th>Water</th>
<th>Depth (f)</th>
<th>Depth (m)</th>
<th>B. alazanesis</th>
<th>O. tener</th>
<th>Cibicidoides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>δ O</td>
<td>δ C</td>
<td>δ O</td>
</tr>
<tr>
<td>5021</td>
<td>36.0</td>
<td>0.99</td>
<td>-1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5040</td>
<td>41.8</td>
<td>0.76</td>
<td>-0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5090</td>
<td>57.0</td>
<td>0.98</td>
<td>-0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5110</td>
<td>63.1</td>
<td>1.03</td>
<td>-0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5120</td>
<td>66.2</td>
<td>1.17</td>
<td>-0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5182</td>
<td>85.47</td>
<td>1.13</td>
<td>-0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5187</td>
<td>86.59</td>
<td>1.06</td>
<td>-0.50</td>
<td>1.14</td>
<td>-0.40</td>
</tr>
<tr>
<td>5193</td>
<td>88.35</td>
<td>0.27</td>
<td>-0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5195</td>
<td>88.94</td>
<td>0.24</td>
<td>-0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5196</td>
<td>89.39</td>
<td>0.36</td>
<td>-0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5198</td>
<td>90.10</td>
<td>0.26</td>
<td>-0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5200</td>
<td>90.71</td>
<td>0.30</td>
<td>-0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5202</td>
<td>91.26</td>
<td>0.32</td>
<td>-0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5204</td>
<td>91.88</td>
<td>0.09</td>
<td>-0.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5206</td>
<td>92.54</td>
<td>0.15</td>
<td>-0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5207</td>
<td>92.64</td>
<td>0.26</td>
<td>-0.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5209</td>
<td>93.40</td>
<td>0.56</td>
<td>-0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5213</td>
<td>94.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EUREKA 67-128 (Cont'd)

<table>
<thead>
<tr>
<th>Depth (f)</th>
<th>Depth (m)</th>
<th>G. subglobosa</th>
<th>Chiloguembelina</th>
<th>Pseudohastigerina</th>
<th>G. ampliapertura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><124μm</td>
<td><124μm</td>
<td>180 - 300μm</td>
<td></td>
</tr>
<tr>
<td>5182</td>
<td>85.15</td>
<td>-1.40</td>
<td>0.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5187</td>
<td>86.59</td>
<td>-1.28</td>
<td>0.64</td>
<td>-1.08</td>
<td>0.02</td>
</tr>
<tr>
<td>5193</td>
<td>88.35</td>
<td>-1.42</td>
<td>0.44</td>
<td>-1.34</td>
<td>0.24</td>
</tr>
<tr>
<td>5195</td>
<td>88.94</td>
<td></td>
<td>-1.38</td>
<td>0.23</td>
<td>-1.37</td>
</tr>
<tr>
<td>5292</td>
<td>118.85</td>
<td>-0.47</td>
<td>-0.09</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DSDP 77B

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>Cibicidoides</th>
<th>O. tener</th>
<th>G. angustibilicata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><124μm</td>
<td><124μm</td>
<td>180 - 300μm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ O</td>
<td>δ C</td>
<td>δ O</td>
</tr>
<tr>
<td>36-3, 50</td>
<td>329.62</td>
<td>1.68</td>
<td>0.79</td>
<td>-0.56</td>
</tr>
<tr>
<td>37-1, 58</td>
<td>335.80</td>
<td>1.61</td>
<td>0.70</td>
<td>-0.69</td>
</tr>
<tr>
<td>37-2, 51</td>
<td>337.23</td>
<td>1.32</td>
<td>0.56</td>
<td>-0.67</td>
</tr>
<tr>
<td>37-3, 50</td>
<td>338.72</td>
<td>1.35</td>
<td>0.64</td>
<td>-0.67</td>
</tr>
<tr>
<td>37-4, 50</td>
<td>340.22</td>
<td>1.38</td>
<td>0.56</td>
<td>-0.61</td>
</tr>
<tr>
<td>37-6, 46</td>
<td>342.98</td>
<td>1.44</td>
<td>0.86</td>
<td>-0.41</td>
</tr>
<tr>
<td>38-1, 50</td>
<td>344.70</td>
<td>1.46</td>
<td>0.74</td>
<td>-0.33</td>
</tr>
<tr>
<td>38-3, 43</td>
<td>347.63</td>
<td>1.64</td>
<td>0.77</td>
<td>-0.35</td>
</tr>
<tr>
<td>38-4, 50</td>
<td>349.22</td>
<td>1.62</td>
<td>0.60</td>
<td>-0.39</td>
</tr>
<tr>
<td>38-5, 50</td>
<td>350.72</td>
<td>1.64</td>
<td>0.77</td>
<td>-0.39</td>
</tr>
<tr>
<td>39-1, 50</td>
<td>354.12</td>
<td>1.60</td>
<td>0.60</td>
<td>-0.47</td>
</tr>
<tr>
<td>39-2, 49</td>
<td>355.61</td>
<td>1.62</td>
<td>0.60</td>
<td>-0.47</td>
</tr>
<tr>
<td>39-3, 50</td>
<td>357.12</td>
<td>1.62</td>
<td>0.60</td>
<td>-0.47</td>
</tr>
</tbody>
</table>
DSDP 77B (Cont'd)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>Cibicidoides</th>
<th>O. tener</th>
<th>G. angustibillicata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18 δ O</td>
<td>13 δ C</td>
<td>18 δ O</td>
<td>13 δ C</td>
</tr>
<tr>
<td>41-2, 57</td>
<td>373.89</td>
<td>1.45</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>41-3, 53</td>
<td>375.35</td>
<td></td>
<td></td>
<td>-0.23</td>
</tr>
<tr>
<td>41-4, 54</td>
<td>376.87</td>
<td>1.99</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>41-5, 54</td>
<td>378.37</td>
<td></td>
<td></td>
<td>-0.41</td>
</tr>
<tr>
<td>41-6, 52</td>
<td>379.82</td>
<td>1.69</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>42-1, 54</td>
<td>381.55</td>
<td></td>
<td></td>
<td>-0.26</td>
</tr>
<tr>
<td>42-2, 54</td>
<td>383.05</td>
<td>1.50</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>42-3, 45</td>
<td>384.48</td>
<td></td>
<td></td>
<td>-0.15</td>
</tr>
<tr>
<td>42-4, 55</td>
<td>386.09</td>
<td>1.88</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>42-5, 55</td>
<td>387.57</td>
<td></td>
<td></td>
<td>-0.39</td>
</tr>
<tr>
<td>42-6, 53</td>
<td>389.03</td>
<td>1.68</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>43-1, 54</td>
<td>390.65</td>
<td></td>
<td></td>
<td>-0.30</td>
</tr>
<tr>
<td>43-2, 55</td>
<td>392.18</td>
<td>1.77</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>43-3, 54</td>
<td>393.67</td>
<td></td>
<td></td>
<td>-0.03</td>
</tr>
<tr>
<td>43-4, 54</td>
<td>395.16</td>
<td>1.86</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>43-5, 42</td>
<td>396.55</td>
<td></td>
<td></td>
<td>-0.43</td>
</tr>
<tr>
<td>43-6, 42</td>
<td>398.05</td>
<td></td>
<td></td>
<td>-0.18</td>
</tr>
<tr>
<td>44-1, 54</td>
<td>399.75</td>
<td></td>
<td></td>
<td>-0.38</td>
</tr>
<tr>
<td>44-2, 65</td>
<td>401.47</td>
<td>1.50</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>44-3, 51</td>
<td>402.74</td>
<td></td>
<td></td>
<td>-0.41</td>
</tr>
<tr>
<td>44-4, 51</td>
<td>404.24</td>
<td>1.63</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>44-5, 50</td>
<td>405.73</td>
<td></td>
<td></td>
<td>-0.28</td>
</tr>
<tr>
<td>44-6, 41</td>
<td>407.13</td>
<td>1.38</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>45-2, 54</td>
<td>410.34</td>
<td>1.68</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>45-3, 45</td>
<td>413.27</td>
<td>1.56</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>45-4, 45</td>
<td>414.86</td>
<td></td>
<td></td>
<td>-0.26</td>
</tr>
<tr>
<td>45-5, 53</td>
<td>416.33</td>
<td>1.23</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>46-2, 54</td>
<td>419.64</td>
<td>1.42</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>46-3, 54</td>
<td>422.64</td>
<td>1.29</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>46-4, 32</td>
<td>425.42</td>
<td>1.42</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>46-5, 42</td>
<td>425.52</td>
<td>1.81</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>46-6, 54</td>
<td>425.64</td>
<td>1.71</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>47-2, 43</td>
<td>428.63</td>
<td>1.18</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>47-3, 53</td>
<td>431.78</td>
<td>1.51</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>48-2, 53</td>
<td>438.72</td>
<td>1.44</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>48-4, 50</td>
<td>441.13</td>
<td>1.24</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>48-5, 58</td>
<td>442.08</td>
<td>1.59</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>48-6, 55</td>
<td>443.88</td>
<td>1.36</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>49-1, 54</td>
<td>445.57</td>
<td></td>
<td></td>
<td>-0.40</td>
</tr>
<tr>
<td>49-2, 45</td>
<td>446.98</td>
<td>1.60</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>49-3, 45</td>
<td>448.48</td>
<td></td>
<td></td>
<td>-0.26</td>
</tr>
<tr>
<td>49-4, 37</td>
<td>449.90</td>
<td>1.19</td>
<td>0.71</td>
<td></td>
</tr>
</tbody>
</table>
DSDP 77B (Cont'd)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>Cibicidoides 18</th>
<th>Cibicidoides 13</th>
<th>O. tener 18</th>
<th>O. tener 13</th>
<th>G. angustibilicata 18</th>
<th>G. angustibilicata 13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>δ O</td>
<td>δ C</td>
<td>δ O</td>
<td>δ C</td>
<td>δ O</td>
<td>δ C</td>
</tr>
<tr>
<td>49-5, 32</td>
<td>451.32</td>
<td>1.44</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-5, 42</td>
<td>451.45</td>
<td></td>
<td></td>
<td>-0.39</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-6, 54</td>
<td>453.04</td>
<td>1.35</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-1, 28</td>
<td>454.38</td>
<td>1.23</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-1,100</td>
<td>455.10</td>
<td>1.23</td>
<td>0.58</td>
<td>1.48</td>
<td>-0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-2,106</td>
<td>456.68</td>
<td></td>
<td></td>
<td>-0.23</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-3, 61</td>
<td>457.75</td>
<td></td>
<td></td>
<td>-0.14</td>
<td>0.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-3,100</td>
<td>458.10</td>
<td>0.85</td>
<td>0.60</td>
<td>1.65</td>
<td>-0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-5,100</td>
<td>461.10</td>
<td>1.36</td>
<td>0.66</td>
<td>1.64</td>
<td>-0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-5,104</td>
<td>461.17</td>
<td></td>
<td></td>
<td>-0.02</td>
<td>0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-1,100</td>
<td>464.20</td>
<td>1.69</td>
<td>-0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-2, 34</td>
<td>465.04</td>
<td>1.78</td>
<td>1.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-3,100</td>
<td>467.20</td>
<td>1.24</td>
<td>0.93</td>
<td>1.81</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-5, 75</td>
<td>469.95</td>
<td>1.64</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-5,100</td>
<td>470.20</td>
<td></td>
<td></td>
<td>1.97</td>
<td>-0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52-1, 71</td>
<td>472.91</td>
<td>0.71</td>
<td>0.84</td>
<td>0.95</td>
<td>-0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52-1,143</td>
<td>473.73</td>
<td>0.72</td>
<td>0.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52-2, 56</td>
<td>474.36</td>
<td>0.59</td>
<td>1.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52cc</td>
<td>475.30</td>
<td>0.60</td>
<td>1.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-1,002</td>
<td>476.32</td>
<td>0.64</td>
<td>1.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>G. opima 18</th>
<th>G. opima 13</th>
<th>C. cubensis 18</th>
<th>C. cubensis 13</th>
<th>G. ampliapertura 18</th>
<th>G. ampliapertura 13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>δ O</td>
<td>δ C</td>
<td>δ O</td>
<td>δ C</td>
<td>δ O</td>
<td>δ C</td>
</tr>
<tr>
<td>39-1, 50</td>
<td>354.12</td>
<td>0.94</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-2, 49</td>
<td>355.61</td>
<td>0.71</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-3, 50</td>
<td>357.12</td>
<td>0.79</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-4, 51</td>
<td>358.63</td>
<td>0.95</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-5, 51</td>
<td>360.13</td>
<td>0.78</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-6, 52</td>
<td>361.64</td>
<td>0.57</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-2, 59</td>
<td>364.71</td>
<td>0.83</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-3, 55</td>
<td>367.65</td>
<td>0.93</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-1, 57</td>
<td>372.39</td>
<td>0.77</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-2, 57</td>
<td>373.89</td>
<td>0.65</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-3, 53</td>
<td>375.35</td>
<td>0.67</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DSDP 77B (Cont'd)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>G. opima</th>
<th>C. cubensis</th>
<th>G. ampliapertura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18 δ O</td>
<td>13 δ C</td>
<td>18 δ O</td>
</tr>
<tr>
<td>41-4, 54</td>
<td>376.87</td>
<td>0.86</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>41-5, 54</td>
<td>378.37</td>
<td>0.71</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.55</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>41-6, 52</td>
<td>379.82</td>
<td>0.58</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>42-1, 54</td>
<td>381.55</td>
<td>0.90</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.81</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>42-2, 54</td>
<td>383.05</td>
<td>0.87</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>42-3, 45</td>
<td>384.48</td>
<td>0.80</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>42-4, 55</td>
<td>386.09</td>
<td>0.92</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>42-5, 55</td>
<td>387.57</td>
<td>0.82</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>42-6, 53</td>
<td>389.03</td>
<td>0.67</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>43-1, 54</td>
<td>390.65</td>
<td>0.62</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>43-2, 55</td>
<td>392.18</td>
<td>0.58</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>43-3, 54</td>
<td>393.67</td>
<td>0.87</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>43-4, 54</td>
<td>395.16</td>
<td>0.67</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>43-5, 42</td>
<td>396.55</td>
<td>0.82</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>43-6, 42</td>
<td>398.05</td>
<td>0.76</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>44-1, 54</td>
<td>399.75</td>
<td>0.76</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>44-2, 65</td>
<td>401.47</td>
<td>0.54</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>44-3, 51</td>
<td>402.74</td>
<td>0.66</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>44-4, 51</td>
<td>404.24</td>
<td>0.64</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>44-5, 50</td>
<td>405.73</td>
<td>0.62</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>44-6, 41</td>
<td>407.13</td>
<td>0.48</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>45-1, 51</td>
<td>408.81</td>
<td>0.81</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>45-2, 54</td>
<td>410.34</td>
<td>0.34</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>45-3, 45</td>
<td>411.75</td>
<td>0.47</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>45-4, 45</td>
<td>413.27</td>
<td>0.48</td>
<td>0.35</td>
<td>-0.04</td>
</tr>
<tr>
<td>45-5, 53</td>
<td>414.86</td>
<td>0.71</td>
<td>0.29</td>
<td>0.00</td>
</tr>
<tr>
<td>45-6, 53</td>
<td>416.33</td>
<td>0.58</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>47-1, 54</td>
<td>426.94</td>
<td>-0.03</td>
<td>1.42</td>
<td></td>
</tr>
<tr>
<td>47-3, 52</td>
<td>430.25</td>
<td>0.07</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>47-4, 55</td>
<td>431.78</td>
<td>0.00</td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td>48-1, 103</td>
<td>436.83</td>
<td>-0.21</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>48-2,139</td>
<td>438.72</td>
<td>-0.02</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>48-3, 73</td>
<td>439.55</td>
<td>0.11</td>
<td>1.44</td>
<td>-0.14</td>
</tr>
<tr>
<td>48-4, 80</td>
<td>441.13</td>
<td>-0.07</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>48-5, 33</td>
<td>442.15</td>
<td>0.01</td>
<td>1.38</td>
<td>-0.17</td>
</tr>
<tr>
<td>48-6, 55</td>
<td>443.88</td>
<td>-0.11</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>49-3, 45</td>
<td>448.48</td>
<td>0.14</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>51-3, 74</td>
<td>466.97</td>
<td>-0.23</td>
<td>1.82</td>
<td></td>
</tr>
<tr>
<td>51-4, 63</td>
<td>468.35</td>
<td>-0.14</td>
<td>1.97</td>
<td></td>
</tr>
<tr>
<td>51-5, 75</td>
<td>469.95</td>
<td>-0.25</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>51-6, 85</td>
<td>471.55</td>
<td>-0.10</td>
<td>1.66</td>
<td></td>
</tr>
</tbody>
</table>
DSDP 77B (Cont'd)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>G. euapertura</th>
<th>C. dissimilis</th>
<th>S. linaperta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18 13</td>
<td>18 13</td>
<td>18 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\delta 0) (\delta C)</td>
<td>(\delta 0) (\delta C)</td>
<td>(\delta 0) (\delta C)</td>
</tr>
<tr>
<td>43-5, 42</td>
<td>396.55</td>
<td>1.46 0.43</td>
<td>0.81 0.30</td>
<td>1.19 0.61</td>
</tr>
<tr>
<td>43-6, 42</td>
<td>398.05</td>
<td>1.19 0.61</td>
<td>1.38 0.51</td>
<td>1.15 0.44</td>
</tr>
<tr>
<td>48-3, 73</td>
<td>439.55</td>
<td></td>
<td>1.22 1.04</td>
<td>0.57 0.35</td>
</tr>
<tr>
<td>48-5, 33</td>
<td>442.15</td>
<td></td>
<td>1.20 1.04</td>
<td>0.50 1.06</td>
</tr>
<tr>
<td>48-6, 55</td>
<td>443.88</td>
<td>-0.35 1.22</td>
<td>1.26 1.03</td>
<td>0.65 1.01</td>
</tr>
<tr>
<td>51-3, 74</td>
<td>466.97</td>
<td>1.20 1.04</td>
<td>0.65 1.01</td>
<td>0.70 1.01</td>
</tr>
<tr>
<td>51-4, 63</td>
<td>468.35</td>
<td>1.33 1.08</td>
<td>0.84 1.19</td>
<td></td>
</tr>
<tr>
<td>51-5, 75</td>
<td>469.95</td>
<td>1.38 1.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-6, 85</td>
<td>471.55</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DSDP 116

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>C. ungerianus</th>
<th>G. subglobosa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18 13</td>
<td>18 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\delta 0) (\delta C)</td>
<td>(\delta 0) (\delta C)</td>
</tr>
<tr>
<td>23-0</td>
<td>0.84</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>23-1</td>
<td>0.79</td>
<td>0.74</td>
<td>1.04 0.41</td>
</tr>
<tr>
<td>23-2, 124</td>
<td>0.86</td>
<td>0.53</td>
<td>1.02 0.41</td>
</tr>
<tr>
<td>23-4, bot</td>
<td>0.92</td>
<td>0.51</td>
<td>0.96 0.30</td>
</tr>
</tbody>
</table>

DSDP 167

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>C. ungerianus</th>
<th>O. tener</th>
<th>C. cubensis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18 13</td>
<td>18 13</td>
<td>18 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\delta 0) (\delta C)</td>
<td>(\delta 0) (\delta C)</td>
<td>(\delta 0) (\delta C)</td>
</tr>
<tr>
<td>22-1, 59</td>
<td></td>
<td>-0.37 1.09</td>
<td>-0.33</td>
<td>1.50</td>
</tr>
<tr>
<td>23-1, 126</td>
<td></td>
<td>-0.20 2.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 cc</td>
<td></td>
<td>0.77 0.64</td>
<td>1.24</td>
<td>-0.03</td>
</tr>
<tr>
<td>26 cc</td>
<td></td>
<td>0.57 0.99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DSDP 401

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>C. cubensis</th>
<th>Pseudohastigerina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18 δ</td>
<td>13 δ</td>
</tr>
<tr>
<td>2-1, 8</td>
<td></td>
<td>0.33</td>
<td>1.12</td>
</tr>
<tr>
<td>3-1, 15</td>
<td></td>
<td>0.07</td>
<td>1.10</td>
</tr>
</tbody>
</table>

DSDP 357

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>C. ungerianus</th>
<th>C. cubensis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18 δ</td>
<td>13 δ</td>
</tr>
<tr>
<td>19-1, 100</td>
<td></td>
<td>0.93</td>
<td>0.27</td>
</tr>
<tr>
<td>19-2, 100</td>
<td></td>
<td>1.42</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.56</td>
<td>0.70</td>
</tr>
</tbody>
</table>

DSDP 10

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>C. ungerianus</th>
<th>G. subglobosa</th>
<th>O. tener</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18 δ</td>
<td>13 δ</td>
<td>18 δ</td>
</tr>
<tr>
<td>5-3, 50</td>
<td></td>
<td>1.77</td>
<td>1.71</td>
<td>2.12</td>
</tr>
<tr>
<td>5-4, 25</td>
<td></td>
<td>1.38</td>
<td>1.36</td>
<td></td>
</tr>
</tbody>
</table>

DSDP 214

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>C. ungerianus</th>
<th>G. subglobosa</th>
<th>O. tener</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18 δ</td>
<td>13 δ</td>
<td>18 δ</td>
</tr>
<tr>
<td>26-3, top</td>
<td></td>
<td>1.11</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>26-5, top</td>
<td></td>
<td>1.06</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>26-6, top</td>
<td></td>
<td>1.16</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>27-1, 60</td>
<td></td>
<td>1.35</td>
<td>1.70</td>
<td>1.78</td>
</tr>
</tbody>
</table>
DSDP 214 (Cont'd)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>C. ungerianus</th>
<th>G. subglobosa</th>
<th>O. tener</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ O</td>
<td>δ C</td>
<td>δ O</td>
</tr>
<tr>
<td>27-4, 60</td>
<td></td>
<td>0.94</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>28-1, 60</td>
<td></td>
<td>0.61</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>28-3, 60</td>
<td></td>
<td>0.51</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>28-5, 63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-6, 120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DSDP 548A

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>C. ungerianus</th>
<th>C. cubensis (125 - 150um)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ O</td>
<td>δ C</td>
</tr>
<tr>
<td>16-3, 52-54</td>
<td></td>
<td>1.09</td>
<td>0.61</td>
</tr>
<tr>
<td>59-61</td>
<td></td>
<td>1.10</td>
<td>0.70</td>
</tr>
<tr>
<td>65-67</td>
<td></td>
<td>0.89</td>
<td>0.76</td>
</tr>
<tr>
<td>73-75</td>
<td></td>
<td>1.02</td>
<td>0.84</td>
</tr>
<tr>
<td>81-83</td>
<td></td>
<td>1.04</td>
<td>1.07</td>
</tr>
<tr>
<td>86-88</td>
<td></td>
<td>0.90</td>
<td>-0.96</td>
</tr>
<tr>
<td>93-95</td>
<td></td>
<td>0.90</td>
<td>1.00</td>
</tr>
<tr>
<td>22-5, 135-137</td>
<td></td>
<td>0.15</td>
<td>0.99</td>
</tr>
<tr>
<td>141-143</td>
<td></td>
<td>-0.69</td>
<td>0.79</td>
</tr>
<tr>
<td>22-6, 0-2</td>
<td></td>
<td>-0.83</td>
<td>0.46</td>
</tr>
<tr>
<td>3-5</td>
<td></td>
<td>-0.72</td>
<td>0.21</td>
</tr>
<tr>
<td>8-10</td>
<td></td>
<td>-0.71</td>
<td>0.72</td>
</tr>
<tr>
<td>18-20</td>
<td></td>
<td>-0.92</td>
<td>0.30</td>
</tr>
<tr>
<td>29-31</td>
<td></td>
<td>-1.54</td>
<td>-0.11</td>
</tr>
<tr>
<td>43-45</td>
<td></td>
<td>-1.46</td>
<td>-0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.02</td>
<td>0.59</td>
</tr>
</tbody>
</table>
DSDP 362A

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>C. ungerianus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ O</td>
</tr>
<tr>
<td>3-1, 67-70</td>
<td>834.87</td>
<td>0.92</td>
</tr>
<tr>
<td>4-1, 68-71</td>
<td>872.78</td>
<td>0.89</td>
</tr>
<tr>
<td>5-1, 68-71</td>
<td>910.78</td>
<td>0.10</td>
</tr>
<tr>
<td>5-3, 68-70</td>
<td>913.78</td>
<td>-0.02</td>
</tr>
<tr>
<td>5-6, 70-73</td>
<td>918.30</td>
<td>0.49</td>
</tr>
<tr>
<td>6-1, 76-79</td>
<td>929.76</td>
<td>0.37</td>
</tr>
<tr>
<td>6-3, 68-71</td>
<td>932.68</td>
<td>0.00</td>
</tr>
<tr>
<td>6-6, 70-73</td>
<td>937.20</td>
<td>0.06</td>
</tr>
<tr>
<td>7-1, 77-81</td>
<td>948.77</td>
<td>-0.55</td>
</tr>
<tr>
<td>7-5, 68-71</td>
<td>954.68</td>
<td>-0.54</td>
</tr>
<tr>
<td>8-1, 72-75</td>
<td>967.72</td>
<td>-0.42</td>
</tr>
<tr>
<td>8-4, 68-71</td>
<td>972.18</td>
<td>0.01</td>
</tr>
<tr>
<td>9-2, 68-71</td>
<td>997.68</td>
<td>-0.43</td>
</tr>
<tr>
<td>9-4, 68-71</td>
<td>1000.68</td>
<td>-0.55</td>
</tr>
</tbody>
</table>
DSDP 366

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>O. tener</th>
<th>C. ungerianus</th>
<th>Bulimina sp.</th>
<th>Uvigerina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>13</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ 0</td>
<td>δ C</td>
<td>δ 0</td>
<td>δ C</td>
</tr>
<tr>
<td>9-1, 51</td>
<td>1.87</td>
<td>0.10</td>
<td>1.46</td>
<td>1.08</td>
<td>1.82</td>
</tr>
<tr>
<td>9-2, 50</td>
<td>1.95</td>
<td>0.18</td>
<td>1.55</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>10-1, 52</td>
<td>1.01</td>
<td>-0.36</td>
<td>0.70</td>
<td>0.49</td>
<td>0.93</td>
</tr>
<tr>
<td>10-2, 72</td>
<td>0.89</td>
<td>-0.25</td>
<td>0.49</td>
<td>0.70</td>
<td>0.88</td>
</tr>
<tr>
<td>10-3, 68</td>
<td>1.10</td>
<td>-0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hantkenina

- >125μm

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>O. tener</th>
<th>C. cubensis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ 0</td>
<td>δ C</td>
</tr>
<tr>
<td>8-4, 54</td>
<td></td>
<td>-1.07</td>
<td>1.55</td>
</tr>
<tr>
<td>9-1, 51</td>
<td></td>
<td>-1.05</td>
<td>1.58</td>
</tr>
<tr>
<td>9-2, 50</td>
<td></td>
<td>-1.27</td>
<td>1.76</td>
</tr>
<tr>
<td>10-1, 52</td>
<td></td>
<td>-1.49</td>
<td>1.83</td>
</tr>
<tr>
<td>10-2, 72</td>
<td></td>
<td>-0.71</td>
<td>0.60</td>
</tr>
</tbody>
</table>

DSDP 94

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>O. tener</th>
<th>C. ungerianus</th>
<th>Bulimina sp.</th>
<th>Uvigerina sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>13</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ 0</td>
<td>δ C</td>
<td>δ 0</td>
<td>δ C</td>
</tr>
<tr>
<td>13-3,103</td>
<td></td>
<td>1.82</td>
<td>0.36</td>
<td>1.40</td>
<td>0.89</td>
</tr>
<tr>
<td>14-1, 89</td>
<td></td>
<td>1.82</td>
<td>0.36</td>
<td>1.56</td>
<td>1.52</td>
</tr>
<tr>
<td>14-1,109</td>
<td></td>
<td>0.87</td>
<td>1.16</td>
<td>1.76</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.34</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>0.76</td>
</tr>
</tbody>
</table>

P. micra

- 125 - 150μm

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>O. tener</th>
<th>C. cubensis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ 0</td>
<td>δ C</td>
</tr>
<tr>
<td>13-3,103</td>
<td></td>
<td>1.40</td>
<td>-0.41</td>
</tr>
<tr>
<td>14-1,109</td>
<td></td>
<td>0.87</td>
<td>1.07</td>
</tr>
</tbody>
</table>

C. cubensis

- 125 - 150μm

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>O. tener</th>
<th>C. cubensis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>δ 0</td>
<td>δ C</td>
</tr>
<tr>
<td>13-3,103</td>
<td></td>
<td>-0.84</td>
<td>0.41</td>
</tr>
<tr>
<td>14-1,109</td>
<td></td>
<td>0.87</td>
<td>1.07</td>
</tr>
</tbody>
</table>
DSDP 217

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>C. ungerianus</th>
<th>G. cerroazulensis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18 13</td>
<td>18 13</td>
</tr>
<tr>
<td></td>
<td>δ O δ C</td>
<td>δ O δ C</td>
<td></td>
</tr>
<tr>
<td>9-5, 59</td>
<td></td>
<td>0.73 0.82</td>
<td>-0.31 1.37</td>
</tr>
</tbody>
</table>

DSDP 612

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>C. ungerianus</th>
<th>Bulimina sp.</th>
<th>Uvigerina sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18 13</td>
<td>18 13</td>
<td>18 13</td>
</tr>
<tr>
<td></td>
<td>δ O δ C</td>
<td>δ O δ C</td>
<td>δ O δ C</td>
<td>δ O δ C</td>
</tr>
<tr>
<td>16-6, 117</td>
<td></td>
<td>0.46 0.06</td>
<td>0.84 -1.38</td>
<td>1.01 -0.51</td>
</tr>
<tr>
<td>17-1, 120</td>
<td></td>
<td>0.55 -0.16</td>
<td>0.75 -1.18</td>
<td>0.84 -0.98</td>
</tr>
<tr>
<td>17-2, 120</td>
<td></td>
<td></td>
<td></td>
<td>0.95 -0.25</td>
</tr>
</tbody>
</table>

P. micra	P. gemma	G. cerroazulensis
	(124 - 150μm)	(63 - 125μm)
	(18 13)	(18 13)
	δ O δ C	δ O δ C
16-6, 117		-0.19 -1.29
17-1, 120		-0.59 -0.21
17-2, 120		-0.90 -0.50
DSDP 592

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>C. ungerianus</th>
<th>Uvigerina sp.</th>
<th>Chiloguembelina sp. (63 - 125(\mu)m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\delta) O</td>
<td>(\delta) C</td>
<td>(\delta) O</td>
</tr>
<tr>
<td>34-5, 35</td>
<td>1.04</td>
<td>1.93</td>
<td></td>
<td>0.54</td>
</tr>
<tr>
<td>-6, 35</td>
<td>1.00</td>
<td>2.13</td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>35-1, 38</td>
<td>1.07</td>
<td>1.61</td>
<td></td>
<td>0.41</td>
</tr>
<tr>
<td>-2, 33</td>
<td>0.00</td>
<td>1.13</td>
<td>0.46</td>
<td>0.72</td>
</tr>
<tr>
<td>37-1, 57</td>
<td>0.21</td>
<td>1.25</td>
<td>0.58</td>
<td>0.69</td>
</tr>
<tr>
<td>-1, 116</td>
<td>0.18</td>
<td>1.38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DSDP 593

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>C. ungerianus</th>
<th>Uvigerina sp.</th>
<th>Chiloguembelina sp. (63 - 125(\mu)m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\delta) O</td>
<td>(\delta) C</td>
<td>(\delta) O</td>
</tr>
<tr>
<td>57-3, 34</td>
<td>0.78</td>
<td>1.86</td>
<td></td>
<td>0.32</td>
</tr>
<tr>
<td>-4, 32</td>
<td>0.65</td>
<td>1.78</td>
<td></td>
<td>0.17</td>
</tr>
<tr>
<td>-5, 32</td>
<td>0.78</td>
<td>1.94</td>
<td>1.35</td>
<td>1.42</td>
</tr>
<tr>
<td>-6, 36</td>
<td>0.13</td>
<td>1.21</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>60-1, 32</td>
<td>0.23</td>
<td>1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2, 33</td>
<td>0.26</td>
<td>2.01</td>
<td>0.58</td>
<td>0.34</td>
</tr>
<tr>
<td>-3, 32</td>
<td>0.13</td>
<td>0.88</td>
<td>0.51</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Appendix 2. Paleodepth determinations (all depths in meters).

<table>
<thead>
<tr>
<th>Site</th>
<th>Water Depth</th>
<th>Basement Depth</th>
<th>Basement Age (Ma)</th>
<th>Total Sediment Thickness</th>
<th>Sediment Correction</th>
<th>Sediment-free Basement Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4697</td>
<td>5069</td>
<td>80</td>
<td>372</td>
<td>246</td>
<td>4823</td>
</tr>
<tr>
<td>19</td>
<td>4685</td>
<td>4818</td>
<td>50</td>
<td>133</td>
<td>88</td>
<td>4730</td>
</tr>
<tr>
<td>77</td>
<td>4291</td>
<td>4772</td>
<td>39</td>
<td>487</td>
<td>321</td>
<td>4451</td>
</tr>
<tr>
<td>94</td>
<td>1793</td>
<td>>660</td>
<td>>65</td>
<td>>711</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>4447</td>
<td>>5158</td>
<td>>65</td>
<td>>711</td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>3176</td>
<td>4362</td>
<td>135</td>
<td>1186</td>
<td>783</td>
<td>3579</td>
</tr>
<tr>
<td>214</td>
<td>1670</td>
<td>2156</td>
<td>>58</td>
<td>486</td>
<td>321</td>
<td>1835</td>
</tr>
<tr>
<td>219</td>
<td>1764</td>
<td>3684(c)</td>
<td>>58</td>
<td>1920</td>
<td>1267</td>
<td>2417</td>
</tr>
<tr>
<td>253</td>
<td>1962</td>
<td>2521</td>
<td>46</td>
<td>559</td>
<td>369</td>
<td>2152</td>
</tr>
<tr>
<td>277</td>
<td>1232</td>
<td>>1705</td>
<td>>65</td>
<td>>473</td>
<td>>312</td>
<td></td>
</tr>
<tr>
<td>292</td>
<td>2943</td>
<td>3311</td>
<td>38</td>
<td>368</td>
<td>243</td>
<td>3068</td>
</tr>
<tr>
<td>357</td>
<td>2086</td>
<td>>80</td>
<td>>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>363</td>
<td>2247</td>
<td>2997</td>
<td>110</td>
<td>750</td>
<td>495</td>
<td>2502</td>
</tr>
<tr>
<td>366</td>
<td>2860</td>
<td>~3760</td>
<td>>75</td>
<td>~900(c)</td>
<td>~600</td>
<td>3160</td>
</tr>
<tr>
<td>401</td>
<td>2495</td>
<td>>140</td>
<td>>341</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>522</td>
<td>4441</td>
<td>4595</td>
<td>37</td>
<td>154</td>
<td>102</td>
<td>4493</td>
</tr>
<tr>
<td>529</td>
<td>3035</td>
<td>~3525</td>
<td>~69</td>
<td>~490</td>
<td>323</td>
<td>3358</td>
</tr>
<tr>
<td>540</td>
<td>2926</td>
<td>>5000</td>
<td>>100</td>
<td>>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>548A</td>
<td>1246</td>
<td>1782</td>
<td>>75</td>
<td>536</td>
<td>354</td>
<td>1428</td>
</tr>
<tr>
<td>549</td>
<td>2336</td>
<td>3296</td>
<td>>120</td>
<td>960</td>
<td>634</td>
<td>2662</td>
</tr>
<tr>
<td>563</td>
<td>3796</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>592</td>
<td>1098</td>
<td>>1487</td>
<td></td>
<td>>388.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>593</td>
<td>1068</td>
<td>>1640</td>
<td></td>
<td>>571.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>612</td>
<td>1386</td>
<td></td>
<td></td>
<td>>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E67-128</td>
<td>1494</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 2. Paleodepth determinations (all depths in meters). Cont'd

<table>
<thead>
<tr>
<th>Site</th>
<th>Δ Depth in 37 MY</th>
<th>Sediment free Basement Depth at 37 MY</th>
<th>Depth to EO/OLIGO Boundary</th>
<th>Depth of EO/OLIGO above Basement</th>
<th>Sediment Correction</th>
<th>EO/OLIGO Seafloor Paleo-depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>500</td>
<td>4323</td>
<td>80</td>
<td>292</td>
<td>96</td>
<td>4227</td>
</tr>
<tr>
<td>19</td>
<td>1000</td>
<td>3730</td>
<td>79</td>
<td>~60</td>
<td></td>
<td>3730</td>
</tr>
<tr>
<td>77</td>
<td>1800</td>
<td>2651</td>
<td>472.3</td>
<td>~15</td>
<td></td>
<td>2651</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(a)</td>
</tr>
<tr>
<td>119</td>
<td>>700</td>
<td>356</td>
<td></td>
<td></td>
<td></td>
<td>3700(b)</td>
</tr>
<tr>
<td>167</td>
<td>0</td>
<td>3579</td>
<td>530</td>
<td>656</td>
<td>216</td>
<td>3363</td>
</tr>
<tr>
<td>214</td>
<td>900</td>
<td>935</td>
<td>257</td>
<td>729</td>
<td>76</td>
<td>859</td>
</tr>
<tr>
<td>219</td>
<td>800</td>
<td>1617</td>
<td>168</td>
<td>1743</td>
<td>575</td>
<td>1168</td>
</tr>
<tr>
<td>253</td>
<td>1400</td>
<td>752</td>
<td>116</td>
<td>146</td>
<td></td>
<td>606</td>
</tr>
<tr>
<td>277</td>
<td>700</td>
<td>190</td>
<td>>283</td>
<td>>93</td>
<td></td>
<td>(a)</td>
</tr>
<tr>
<td>292</td>
<td>2000</td>
<td>1068</td>
<td>321</td>
<td>~46</td>
<td></td>
<td>1068</td>
</tr>
<tr>
<td>357</td>
<td>500</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td>1500(d)</td>
</tr>
<tr>
<td>363</td>
<td>100</td>
<td>2402</td>
<td>186</td>
<td>564</td>
<td>186</td>
<td>2216</td>
</tr>
<tr>
<td>366</td>
<td>400</td>
<td>2760</td>
<td>418</td>
<td>~482</td>
<td>~159</td>
<td>2601</td>
</tr>
<tr>
<td>401</td>
<td></td>
<td>84.5</td>
<td>>257</td>
<td></td>
<td></td>
<td>(a)</td>
</tr>
<tr>
<td>522</td>
<td>1800</td>
<td>2693</td>
<td>136</td>
<td>18</td>
<td></td>
<td>2693</td>
</tr>
<tr>
<td>529</td>
<td>900</td>
<td>2458</td>
<td>200</td>
<td>290</td>
<td>96</td>
<td>2362</td>
</tr>
<tr>
<td>540</td>
<td></td>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td>(a)</td>
</tr>
<tr>
<td>548A</td>
<td>400</td>
<td>1028</td>
<td>358</td>
<td>178</td>
<td>59</td>
<td>969</td>
</tr>
<tr>
<td>549</td>
<td>0</td>
<td>2662</td>
<td>123</td>
<td>837</td>
<td>276</td>
<td>2386</td>
</tr>
<tr>
<td>563</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2200(e)</td>
</tr>
<tr>
<td>592</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(a)</td>
</tr>
<tr>
<td>593</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(a)</td>
</tr>
<tr>
<td>612</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(a)</td>
</tr>
<tr>
<td>E67-128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(a)</td>
</tr>
</tbody>
</table>

(a) for these locations present-day water depth is assumed.
(b) present water depth corrected by Δ depth in 37 mY.
(c) based on seismics.
(d) Barker (1983).
(e) Miller and Fairbanks (1983).