Abstract View

Volume 30 Issue 1 (January 2020)

GSA Today

Article, pp. 4-10 | Full Text | PDF

Fate of the lower lithosphere during shallow-angle subduction: The Laramide example

Alan D. Chapman, Ojashvi Rautela

Geology Dept., Macalester College, St. Paul, Minnesota 55105, USA

Jessie Shields

Department of Earth and Environmental Sciences, California State University, Fresno, California 93740, USA

Mihai N. Ducea

Dept. of Geosciences, University of Arizona, Tucson, Arizona 85721, USA, and Faculty of Geology and Geophysics, University of Bucharest, 010041, Bucharest, Romania

Jason Saleeby

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA

Abstract

Continental arc lower crust and underlying mantle wedge assemblages native to the Mojave Desert were dislodged, transported eastward during Laramide shallow-angle subduction, and attached to the base of the Colorado Plateau transition zone (central Arizona, USA) and further inboard. We identify here two late Oligocene xenolith localities from the transition zone (Camp Creek and Chino Valley) that likely contain remnants of the missing Mojave lithosphere. Geochemical, isotopic, and thermobarometric data from garnet clinopyroxenite, the dominant xenolith type at both studied localities, strongly suggest a continental arc residue (“arclogite”) rather than a lower plate subduction (“eclogite”) origin. Zircon grains extracted from these nodules yield a bimodal age distribution with peaks at ca. 75 and 150 Ma, overlapping ages of continental arc magmas emplaced into the Mojave Desert (the southern California batholith) and suggesting a consanguineous relationship. In contrast, Mesozoic and early Cenozoic igneous rocks from SW Arizona, with age peaks at ca. 60 and 170 Ma, do not provide as close a match. In light of these results, we suggest that a mafic keel to the southern California batholith: (1) formed in two discrete (Late Jurassic and Late Cretaceous) pulses; (2) was transported along the Moho ~500 km eastward along the leading edge of the shallowly subducting Farallon plate; and (3) was affixed to the base of the crust in central Arizona. Titanite U-Pb and garnet Sm-Nd ages spanning ca. 60–30 Ma suggest that displaced arclogite remained at >600 °C for tens of millions of years following its dispersal and until entrainment in host latite. The lack of arclogite and abundance of spinel peridotite xenoliths in ca. 15 Ma and younger volcanic host rocks and the presence of a vertical high-seismic-velocity anomaly beneath the western Colorado Plateau suggest that arclogite has been foundering into the mantle and being replaced by upwelling asthenosphere since the early Miocene.

Manuscript received 26 April 2019. Revised manuscript received 12 Aug. 2019. Manuscript accepted 19 Aug. 2019. Posted 18 Sept. 2019.

© The Geological Society of America, 2019. CC-BY-NC.

https://doi.org/10.1130/GSATG412A.1

Cover Image

Cover Image

Search Google Scholar for


Search GSA Today


 

top