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INTRODUCTION
We welcome the opportunity to discuss the 

views expressed by Sigloch and Mihalynuk in 
their Comment (Sigloch and Mihalynuk, 
2020; referred to here as SM) on Pavlis et al. 
(2019) because it provides an opportunity to 
elaborate on the criteria for determining sub-
duction polarity, an important problem in the 
North American Cordillera and for tectonic 
reconstructions in general. However, we 
believe SM have disregarded extensive geo-
logic data in an attempt to support their model, 
underscoring our original point that tectonic 
models need to accommodate geologic obser-
vations. We suggest that their perspective 
arises from two assumptions: (1) that the geo-
physically imaged slab walls indicate ancient 
trench position; and (2) that because plate 
reconstructions place North America east of 
imaged slab walls, North America must have 
been east of the trench. From these assump-
tions they subsequently disregard, or attempt 
to explain away, key geologic relationships 
countering this model. However, it is only a 
model, and some of their dismissal of existing 
data apparently comes from a misunderstand-
ing of geologic relationships and, importantly, 
the timing of these relationships. We readily 
acknowledge some of the ambiguities in the 
geologic record, but any integrated model 
must address the available observations. Dis-
parate views of five key relationships are dis-
cussed in this paper.

INTERPRETATION OF DEEP 
MANTLE TOMOGRAPHIC 
ANOMALIES AND PLATE 
RECONSTRUCTION

This topic is a key part of the story, and we 
devoted several pages to this issue in early 

drafts of the paper. However, when we 
realized that experts in this field were 
actively debating the topic, we reduced our 
discussion to a short paragraph. In their 
Comment, SM reiterate parts of their model 
but emphasize a consensus in the geophysi-
cal community that deep mantle tomo-
graphic anomalies are subduction zone rem-
nants. We agree there is a consensus that 
some upper-mantle anomalies can be tracked 
up to existing subducting slabs and locally 
lower-mantle anomalies exist and can appear 
to be continuous with upper mantle anoma-
lies. However, we disagree with extending 
that statement to the interpretation of what 
the deep anomalies represent and, in particu-
lar, their relationship to the positions of 
ancient subduction zones. As we noted in our 
original paper (Pavlis et al., 2019), interpre-
tations of the tomographic images presented 
in Sigloch and Mihalynuk (2013, 2017) have 
been the subject of debate (e.g., Liu, 2014; 
Sun et al., 2017). We have concerns that the 
caveats expressed by Foulger et al. (2013) 
about the interpretation of tomographic 
images have not been adequately addressed 
by the geophysics community. Molnar (2019) 
reviewed results from mantle convection 
models, tomographic models, and mantle 
evolution models and concluded that whole-
mantle convection models are almost cer-
tainly wrong. He instead argued for a revi-
sion of two-layered convection with a 
lower-upper mantle boundary in the depth 
range of 1000–1500 km. The importance of 
these models is clear in the context of this 
discussion; if Molnar (2019) is correct, using 
deep-mantle anomalies to constrain plate 
motion is meaningless, and this entire dis-
cussion is moot. Thus, the deep mantle 

problem is not solved, which underscores 
our conclusion that resolving ancient sub-
duction polarity problems requires a con-
certed collaborative effort between the geo-
logic and geophysical communities.

A foundation of Sigloch and Mihalynuk’s 
(2013, 2017) interpretations is that plate 
reconstructions restore North America to a 
position too far east for a continuous east-
dipping subduction system to generate the 
deep anomaly. We suggest this reasoning 
has two pitfalls: (1) plate reconstructions for 
the Cenozoic are well-constrained, but it 
becomes increasingly suspect in deeper 
time because of difficulties with relative hot 
spot motions (e.g., Tarduno et al., 2009); and 
(2) if the margin was not strictly Andean, 
east-dipping subduction in an offshore arc 
system could equally well have produced 
the anomaly if the ocean basin was large 
enough. Note that we agree with SM that in 
our paper the argument using plate recon-
structions of van de Meer et al. (2010) 
involved somewhat circular reasoning, but 
conceding this point does not eliminate 
either of these serious pitfalls.

TIME ISSUES
In their Comment, SM call on tectonic 

events that are reasonable but infer that the 
events occurred at times inconsistent with 
published geologic data. This was, in fact, 
one of our greatest concerns with the SM 
model and the “ribbon continent” models 
we cited (e.g., Johnston, 2008). There are 
several examples, but here we cite two.

First, west-dipping subduction with a col-
liding arc is not a new concept for Cordille-
ran tectonics (as SM noted), nor is the con-
cept of a Mesozoic archipelago analogous to 
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the southwest Pacific (e.g., Silver and Smith, 
1983; Blakey and Ranney, 2018). The prob-
lem is where and when west-dipping subduc-
tion occurred. SM argue for long-lived, con-
tinuous, west-directed subduction that would 
still be active in the Late Cretaceous (SM, 
their fig. 1A), but no geologic evidence for 
this polarity exists beneath the Wrangellia 
Composite/Insular (WCT/INS) belt and none 
exists beneath the Intermontane/Yukon-
Tanana that is younger than early Jurassic 
(and even that is debated; e.g., compare 
Dusel-Bacon et al., 2015, with Mihalynuk et 
al., 1994). There is abundant evidence for a 
Permian arc collision that involved west-dip-
ping subduction (e.g., closure of the Slide 
Mountain ocean; Dusel-Bacon et al., 2006; 
Beranek and Mortensen, 2011) and our Fig-
ure 1A (a more accurate version of Pavlis et 
al., 2019, fig. 1A) shows the Brooks Range in 
northern Alaska forming via outward (away 
from continent) subduction-collision with an 
arc. However, the timing of this event is sig-
nificantly older than closure of the ocean 
basin between the WCT/INS belt and North 
America, and no continuity exists between 
arcs of the WCT/INS and those recording 
closure of the Angayucham Ocean. Thus, we 
show these as separate subduction systems.

A second example is the statement in SM’s 
Comment that we prefer an “always-Andean” 
model; this misrepresents our view of the Cor-
dillera over time. An Andean analog for the 
Cordillera margin during latest Cretaceous to 
late Eocene time is well documented since the 
early days of plate tectonics (e.g., Coney, 
1978; Coney and Evenchick, 1994), but few, if 
any, would make that analogy for any time 
prior to ca. 80 Ma at latitudes north of ~42°. 
Since the first paleomagnetic data published 
from late Triassic rocks in Wrangellia (Hill-
house, 1977) and early terrane syntheses (e.g., 
Coney et al., 1980), it has been clear that at 
least some parts of the WCT/INS originated 
far from its present position. Interpretations of 
the path the composite terrane took, the width 
of the ocean basin between it and NA in Juras-
sic time, and how it became dispersed along 
the margin are interpretations that continue to 
evolve (e.g., Miller et al., 2006; Matthews et 
al., 2017). The polarity of subduction that 
closed the Mesozoic ocean basin, however, is 
not as contentious as SM claim.

WESTERN MARGIN OF WCT/INS: 
EVIDENCE FOR PERSISTENT EAST-
DIPPING SUBDUCTION

We are puzzled by the statement in SM that 
“our Archipelago model features as much 

eastward subduction as the Andean-style 
model, just located further west” and that Fig-
ure 1 in Pavlis et al. (2019) misrepresents 
SM’s portrayal of this eastward subduction 
zone. Although Sigloch and Mihalynuk (2013) 
show east-dipping subduction along a portion 
of WCT/INS in the Cretaceous, Figure 1C in 
Pavlis et al. (2019) is an accurate representa-
tion of Figure 4B of Sigloch and Mihalynuk 
(2017), which shows only west-dipping sub-
duction along the inboard margin of WCT/
INS. Despite this confusion, however, even if 
they now accept eastward subduction west of 
WCT/INS, it is clear in Sigloch and Mihaly-
nuk’s (2017) original model that they rejected 
eastward subduction for this boundary over 
large swaths of geologic time.

The subduction polarity in southern 
Alaska was controversial in the past (e.g., 
Reed and Lanphere, 1974; Hudson, 1979; 
Reed et al., 1983; Wallace et al., 1989; Decker 
et al., 1994; Plafker and Berg, 1994), but the 
basis of the controversy has diminished as 
more data have accumulated. Most of us 
have worked on this problem from a variety 
of perspectives, including structural/petro-
logic studies, stratigraphic studies, and igne-
ous/detrital geochronology. We admit there 
are ambiguities arising from an incomplete 
geologic record. Nonetheless, as we empha-
sized in our original paper, there is strong 
upper-plate geologic evidence for all of the 
elements of a seaward-facing (i.e., east-dip-
ping) subduction system through all of Juras-
sic and Cretaceous time.

Despite disturbance by later events, this 
subduction geometry is now clearly recorded 
along the western margin of the WCT by the 
characteristic tripartite forearc-arc assem-
blage of accretionary prism (with blue-
schists), a long-lived forearc basin, and mag-
matic arc (Figs. 1 and 2; also fig. 2 in Pavlis 
et al., 2019). Gaps in the accretionary record, 
unconformities in the forearc basin, and gaps 
in the magmatic record reflect processes that 
complicate subduction margins, including 
ridge-subduction (e.g., Mahar et al., 2019), 
subduction erosion in the forearc (e.g., Clift 
et al., 2005; Amato et al., 2013), back-arc 
opening and closure, and complications 
from strike-slip (Pavlis and Roeske, 2007). 
In contrast to this rich record of subduction 
along the western margin of WCT/INS, 
nowhere have any geologic relations been 
observed that record west-dipping subduc-
tion beneath WCT/INS.

A fundamental difference between our 
interpretation of the rock record and that of 
SM is that they seem to require continuous 

accretion in the accretionary complex as evi-
dence of continuous subduction. However, 
there is clear evidence globally that most 
arcs, particularly oceanic arcs like the Talk-
eetna arc, which forms part of the WCT/INS, 
undergo episodes of either subduction ero-
sion or non-accretion (von Huene and Scholl, 
1991; Clift and Vannucchi, 2004). The fact 
that the oldest part of the Talkeetna arc over-
laps in age with the oldest blueschist facies 
metamorphic rocks on the oceanward (west-
ern) side of the arc (Fig. 2), and that blue-
schist facies rocks are preserved intermit-
tently along strike for hundreds of kilometers 
and span >20 m.y. of crystallization ages, is a 
compelling case for the blueschists recording 
initiation and early stages of subduction 
beneath WCT/INS in the latest Triassic–
early Jurassic (Roeske et al., 1989). As we 
stated in our original paper, the gap in time 
between the blueschist facies rocks and the 
more outboard part of the accretionary com-
plex coincides very clearly with the migra-
tion of arc magmatism away from the trench 
(Fig. 2). Thus, we interpreted this preserva-
tion gap in the accretionary complex as 
resulting from subduction erosion (Amato et 
al., 2013). The next phase of accretion (Fig. 2) 
was a mélange with maximum depositional 
ages ranging from ca. 170–150 Ma (Amato et 
al., 2013), a second blueschist assemblage 
with a maximum depositional age (MDA) of 
ca. 135 Ma (Day et al., 2016), syn-thrusting 
emplacement of forearc plutons at ca. 125 
Ma, and a second mélange assemblage with 
MDAs of ca. 100–90 Ma. The first mélange 
assemblage contains detrital zircons indica-
tive of a source exclusively from the WCT/
INS, and the second mélange contains plu-
tonic clasts with U-Pb zircon ages (199–179 
Ma; Amato et al., 2013) that match the age of 
the Talkeetna arc (Amato et al., 2007) mixed 
with a North American source from what is 
now SE Alaska. Any gaps in the accretion-
ary complex are filled by arc magmatism 
and sedimentary basin archives exposed 
upon the outboard part of the WCT/INS (Fig. 
2; Clift et al., 2005; Rioux et al., 2007).

The Jurassic–Cretaceous sedimentary 
strata exposed between the Chugach accre-
tionary complex and Jurassic–Cretaceous 
magmatic arc rocks within the WCT/INS 
are interpreted as west-facing forearc basins 
(Fig. 2). Like the adjacent accretionary 
complex, the forearc basin deposits yield 
detrital zircon signatures that match Juras-
sic–Cretaceous magmatic arc source ter-
ranes exposed within the WCT/INS (Trop et 
al., 2005; Reid et al., 2018; Stevens Goddard 
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et al., 2018). Lithofacies trends and paleo-
current data support sediment flux away 
from the magmatic arc sources and toward 
the Chugach accretionary complex (Trop et 
al., 2002, 2005; LePain et al., 2013). More-
over, the forearc basin strata exhibit an 
Early Cretaceous unconformity that over-
laps the age of intrusions attributed to ridge 
subduction along the accretionary complex-
forearc basin structural boundary (Trop and 
Ridgway, 2007; Mahar et al., 2019). In sum-
mary, both the accretionary complex and 
adjacent forearc basin deposits record a 
shared, continuous record of east-dipping 
subduction beneath the WCT/INS during 
Jurassic–Early Cretaceous time interrupted 
only by ridge subduction.

EASTERN MARGIN OF WCT/INS: 
NO EVIDENCE FOR WEST-DIPPING 
SUBDUCTION

SM state that we portrayed their model 
“as featuring only westward subduction.” 
That was not our intent in the paper 
(although that is what they show in fig. 4B 
of Sigloch and Mihalynuk, 2017); our pri-
mary issue with the Sigloch and Mihalynuk 
(2013, 2017) model is that there is no geo-
logic record of westward subduction 
beneath the WCT/INS. Some early studies 
considered this hypothesis in south-central 
Alaska (e.g., Reed and Lanphere, 1974; 
Wallace et al., 1989), but subsequent tec-
tonic syntheses invoke east-dipping sub-
duction based on regional geologic relation-
ships (Fig. 1C; e.g., Plafker and Berg, 1994; 
Trop and Ridgway, 2007; Gehrels et al., 
2009). SM also claim that heavy overprint-
ing of the eastern margin of the WCT/INS 
prevents reconstruction of subduction 
polarity. We acknowledge that younger plu-
tons, metamorphism, and structures sub-
stantially overprint segments of the margin. 
However, one of the reasons we focused our 
article on the northern Cordillera is because 
in that area, broad regions lack significant 
overprinting, and well-preserved and thor-
oughly studied stratigraphic successions 
occur intermittently along the entire 
inboard margin of the WCT/INS. These 
basinal segments provide robust constraints 
on the stratigraphic/detrital geochronologic 
connections between the WCT/INS and 
inboard terranes during Jurassic–Creta-
ceous time (Fig. 2).

We fully agree with SM that a thorough 
understanding of the Jurassic–Cretaceous 
sedimentary strata exposed along the 
inboard margin of the WCT/INS is a key 

component for determining subduction 
polarity during Late Jurassic and Early 
Cretaceous time. In the SM model, these 
strata represent sedimentary basins that 
mark the position of a continental-scale 
suture that defines the location of a west-
ward subduction zone that closed the Mez-
calera Ocean. The structural configuration, 
age, and sources of sediment for these 
basins, therefore, provide a rich archive 
that needs to be fully integrated with the 
new geophysical models. In contrast to the 
view expressed by SM that “unravelling 
the story of these relict basins is hampered 
by the huge volumes of sediment that nor-
mally clog them,” we would argue that 
these basins provide a powerful record of 
the tectonic processes involved in their for-
mation, evolution, and collapse.

In the SM model, the inboard Jurassic–
Cretaceous basins (e.g., Kahiltna, Nutzotin, 
Gravina basins in Figures 1A and 1B) formed 
above a west-dipping subduction zone in a 
forearc position between an oceanic arc and 
east-verging accretionary prism. In their 
interpretation, these Jurassic–Cretaceous 
basins formed at a stationary trench far 
removed from the North American continent 
(see fig. 4B in Sigloch and Mihalynuk, 
2017), and were later accreted to North 
America as the westward-migrating conti-
nent was carried into the trench. Coeval with 
interpreted oceanic forearc basin develop-
ment, the western Cordilleran margin is 
interpreted in the SM model as a passive 
margin that lacked magmatism (which is 
clearly incorrect). The sediment in these 
basins, therefore, also provides a test of the 
SM model, because their model predicts no 
Late Jurassic–Early Cretaceous magmatic 
activity east of the suture.

Geologic data from the Jurassic–Creta-
ceous sedimentary basins along this bound-
ary from southwestern Alaska to British 
Columbia, however, point out several issues 
that bear on this problem. In southwestern 
Alaska, for example, there are distinctive 
northern (inboard) and southern (outboard) 
assemblages in synorogenic strata along the 
boundary, with the northern assemblage 
interpreted as being deposited in a west-fac-
ing continental forearc basin (Box et al., 
2019). Sandstones from these strata have up 
to 50% Precambrian detrital zircon grains 
and also contain Cretaceous detrital zircon 
age probability peaks ranging from ca. 
130–80 Ma. Box et al. (2019) note that these 
Cretaceous ages match well with the age 
range of widespread Mesozoic granites in 

the North American continental margin, 
rocks of the Yukon-Tanana upland (e.g., 
Aleinikoff et al., 2000; Dusel-Bacon et al., 
2015). Similarly, parts of the Jurassic–Cre-
taceous strata in south-central Alaska along 
this boundary contain up to 30% Precam-
brian detrital zircons and contain common 
Phanerozoic detrital populations of 126 Ma, 
133 Ma, 147 Ma, and 172 Ma. All these 
detrital zircon ages can be linked to source 
rocks in North America, and these strata are 
interpreted as being deposited in a west-fac-
ing continental forearc basin setting (Trop 
and Ridgway, 2007; Hampton et al., 2010; 
Romero et al., 2020). East-dipping subduc-
tion along the continental margin inboard of 
these basins is recorded by ca. 120–70 Ma 
igneous rocks that intrude rocks of the 
ancestral continental margin and intermon-
tane terrane in eastern Alaska, Yukon, and 
northern British Columbia (e.g., Hart et al., 
2004; Mair et al., 2006; Dusel-Bacon et al., 
2015). To the south, similar relations are 
recorded in the eastern Coast Mountains 
batholith of central British Columbia, which 
is clearly emplaced into rocks of the Sti-
kine/Intermontane terrane and records con-
tinuous east-dipping subduction from ca. 
200 Ma to ca. 110 Ma (Fig. 2, and lower case 
figs. 5 and 6 of Gehrels et al., 2009). Thus, 
these previous studies along the inboard 
margin of the boundary in Alaska and 
coastal British Columbia show that Juras-
sic–Cretaceous basins contain continental 
detritus indicating deposition in close prox-
imity to North America (Fig. 1B). The detri-
tal zircon data therefore neither support a 
hypothesis of a passive North American 
margin nor a lack of magmatism from 175 
to 105 Ma on North America, as required by 
the SM model.

Along the western side of these inboard 
basins, Jurassic–Cretaceous sedimentary 
strata depositionally overlie WCT/INS and 
yield detrital zircon signatures linked to 
source rocks within the WCT/INS and from 
magmatic rocks of ca. 200–120 Ma (e.g., 
Hampton et al., 2010; Lowey, 2019; Trop et 
al., 2020; Fasulo et al., 2020). These strata 
are interpreted as being deposited in an east-
facing backarc-basin setting prior to mid-
Cretaceous shortening and subaerial uplift 
along regional west-verging structures (Figs. 
1B and 1C; e.g., Manuszak et al., 2007; 
Hampton et al., 2010; Trop et al., 2020; Man-
selle et al., 2020). In summary, inboard 
basinal strata exposed in south-central 
Alaska record Jurassic–Cretaceous deposi-
tional linkages with the former continental 
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margin to the east and the WCT/INS to the 
west, and no geologic evidence of westward 
subduction, such as broad assemblages of 
mélange and high P/T metamorphism.

The southern continuations of these 
basins in southeast Alaska and coastal Brit-
ish Columbia record similar relations. As 
described by Yokelson et al. (2015), Upper 
Jurassic through Lower Cretaceous strata 
along the western margin of the basin depo-
sitionally overlie, and were derived from, 
the WCT/INS (western portion of Gravina 
basin in Fig. 1B). These relations are pre-
served in low-grade strata, far west of any 
effects of the Coast Mountains batholith. In 
contrast, Upper Jurassic–Lower Cretaceous 
strata in the eastern portion of the Gravina 
basin are derived from, and are interpreted 
to overlie, rocks of the Intermontane terrane 
to the east (Fig. 1B). Detailed mapping of 
~600 km of strike-length of the boundary 
between inboard and outboard basinal seg-
ments demonstrates that the contact is 
everywhere a mid-Cretaceous, west-vergent 
thrust fault; nowhere have any remnants of 
subduction, such as high-pressure meta-
morphism, mélange structures, or ultra-
mafic rocks, been recognized (Yokelson et 
al., 2015).

Farther south, the Jurassic–Cretaceous 
strata of the Methow basin in southwestern 
Canada and northwestern Washington 
State are interpreted by Sigloch and Mih-
alynuk (2017) as a forearc basin formed 
above a west-dipping subduction zone sep-
arated from North America. In contrast, 
the basin has been interpreted as being 
linked to North America during Jurassic–
Cretaceous time based on several decades 
of geologic studies (e.g., Kleinspehn, 1985; 
Garver, 1992; Garver and Brandon, 1994; 
Garver and Scott, 1995). Many provenance 
studies of the Methow basin, including 
some using detrital zircon ages, document 
east-derived North American sources of 
sediment for this basin (e.g., DeGraaff-
Surpless et al., 2003; MacLaurin et al., 
2011; Surpless et al., 2014).

In summary, there is no geologic evi-
dence of Jurassic–Cretaceous basins form-
ing as east-facing oceanic forearc basins far 
from North America as required by the SM 
model. As would be expected, these basins 
do have complicated histories and their 
paleogeographic/tectonic settings probably 
varied along the strike of the margin. These 
challenges emphasize the importance of 
integrating geophysics with geology.

TECTONIC ANALOGS
SM (their fig. 1) invoke a southwest Pacific 

analog for the tectonic setting of the northern 
Cordillera. Southwest Pacific analogs in vari-
ous forms have been used to describe the 
Mesozoic Cordillera for decades (e.g., Coney, 
1978; Coney et al., 1980; Silver and Smith, 
1983), yet we submit that the exact analog pre-
sented by SM (their fig. 1) implies a paleoge-
ography that is not consistent with the geo-
logic record for the late Mesozoic time interval 
considered. In their model, they view all of 
late Mesozoic Cordilleran tectonics as a sin-
gle, diachronous collision driven by arrival of 
an east-facing arc-trench system like the colli-
sion in progress along the northern continen-
tal margin of Australia. Although there are 
some geometric similarities, this modern sys-
tem is significantly different from the Meso-
zoic Cordilleran margin. It lacks any subduc-
tion zones that dip toward Australia, and the 
collision in progress is an arc colliding with a 
passive margin—a configuration that has not 
existed in the Cordillera since the Paleozoic. 
Thus, this analog does not constitute evidence 
that their model is correct for the Mesozoic of 
the northern Cordillera.
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