On the Efficacy of Humans as Geomorphic Agents

Roger LeB. Hooke, Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455

ABSTRACT
Humans are geomorphic agents. They move vast quantities of soil and rock, and have a major visible impact on the landscape. To place this impact in perspective, I have compared humans with more traditional geomorphic agents on the basis of the mass of material moved per year. In most instances we can identify a line, such as the coast, across which this material is moved. For example, the annual sediment load delivered to the oceans and interior basins by rivers is about 24 Gt, and during the Pleistocene, glaciers probably deposited about 10 Gt of till in moraines and outwash fans every year. In the case of humans, movement of material is more random, so it is not possible to identify such a line. However, the total moved by humans, estimated herein to be 40-45 Gt/yr if the effect of agriculture on river sediment loads (10 Gt/yr) is included, is comparable to or significantly greater than that of any other single geomorphic agent. Considering, in addition, the visual impact of their activity, humans are arguably the most important geomorphic agent currently shaping the surface of Earth.

INTRODUCTION
Early geomorphologists focused on descriptions of the landscape and on evolution of landforms on geologi- cal time scales. Attempts to understand the physical and chemical processes that produced different landforms evolved nearly simultaneously, however, and the modern science emphasizes this approach. Biological processes generally have not been assigned major importance in landscape evolution. However, weathering, soil formation, and the development of karst landscapes are accentuated enormously because microbially produced CO2 combines with percolat- ing rain water to form carbonic acid. Likewise, soil creep is greatly enhanced by burrowing fauna. But compared with landforms created by more traditional agents such as rivers and glaciers, the effects of these biological agents are limited in both magnitude and extent. Furthermore, as the size of the organ- isms increases, their population usually decreases. Thus although larger organ- isms are capable of doing more geomorphic work in a short time, they act less frequently, both in space and time, and thus generally have less impact. This rule breaks down, though, when we consider Homo sapiens, both because the population of this species is so out of proportion to that of any other organism of similar size and because this organism has developed an impressive array of tools, from hoes to tractors, for modifying the landscape (Figs. 1, 2).

This role of humans has been long recognized. Over a century ago, Marsh (1869, 1882) called attention to our ever-increasing impact on the landscape, and the modern environmental literature documents many specific examples (e.g., Turner, 1990). However, a quick survey of several textbooks on geomorphology revealed only one that mentioned humans (or man) in the index, and none that devoted a chapter to this agent.

In short, geomorphologists seem reluctant to give humans equal press with more traditional geomorphic agents. Perhaps this is because there is little mystery about either the processes or the products, or perhaps it is because authors prefer to address only "natural" processes. Humans, however, are not unnatural. They are just as much a part of the natural environment as any other organism, and so the products of human activities also must be con- sidered to be natural, be they books, buildings, or sanitary landfills. For the sake of our environment, and thus our future as a species, it is crucial that we recognize and accept that we are not above nature, somehow supernatural. My objective herein is to compare the efficacy of various geomorphic agents, humans included, on a global scale. How such a comparison should be made is unclear, however. To calculate the work done per unit time—that is, the force exerted to move a mass of soil or rock times the distance it was moved divided by the time required—would be an approach soundly based in physics. This, however, quickly be- comes unwieldy; a rock is entrained by a glacier in Hudson Bay, but what force was exerted on that rock to move it to Ohio and how long did it take? Trying to estimate energy expenditure results in similar problems; most geomorphic agents move material to positions of lower gravitational potential, and thus release (potential) energy rather than consume it.

MASS OF MATERIAL MOVED: A MEASURE OF THE EFFICACY OF A GEOMORPHIC PROCESS

An obvious alternative to a com- parison of geomorphic agents based on work or energy expenditure is one focusing on the mass of material moved. Here, however, it is necessary to distinguish between processes that simply move sediment back and forth, those that move material away from a location only to replace it with other material, and finally those that move material away without replacing it.

Examples of the first type are waves approaching normal to a beach, wind moving sand back and forth in dunes, and farmers with plows turning up soil on the ~1.7 x 10^7 km^2 of Earth that is under cultivation (Ehlich, 1988). Such processes move incredible volumes of sediment. Plowing land area under cultivation annually with furrows 0.2 m wide and 0.1 m deep, for example, involves moving 1500 Gt of soil, most of which soon slumps or is washed back into the furrows. Because the lasting effect of such processes on the topography is small, I have ignored them.

Among processes that move sedi- ment away from a location in a single direction, usually downslope in re- sponse to gravity, are rivers, glaciers, and slope processes. These "unidirec- tional" processes are readily quantified because data are available upon which to base estimates of their prowess. For example, the delivery of sediment to the oceans by rivers is well studied. A common characteristic of such unidirectional processes is that their efficacy can be equated with the rate of movement of sediment across a well-defined line or plane. In the case of rivers, this could be the boundary Agents continued on p. 224

Each month, GSA Today features a short science article on fast-breaking items or current topics of general interest to the 17,000 members of GSA. What do you think of these articles? Do you have an idea for an article that you would like to see published in GSA Today? If so, please contact Eldridge Moores, Science Editor, GSA Today (916) 752-0352, fax 916-752-0951.
between oceans and continents or, in interior basins, the boundary between erosional and depositional regions. In all such unidirectional processes, however, there are intermediate steps in which a particle that is moved is soon thereafter replaced by another, as, for example, the transfer of a sand grain from one point to the next downstream and its replacement by a grain from upstream. To the extent that such internal sediment transfers have no long-term geomorphic effect, I have disregarded them. Some internal transfers are not completely balanced, however, and thus do have a lasting effect. The migration of river meanders is an example.

Sediment transfers resulting from human activities are also internal in the sense that there is no well-defined line or plane across which material is moved. Furthermore, they are decidedly unbalanced, because much of the material removed is not replaced.

HUMAN ACTIVITIES

To quantify the geomorphic impact of Homo sapiens, I have chosen to consider three types of earth-moving activity: excavations for houses, mineral production, and road building. One can make a reasonable estimate of the quantities of earth moved in each of these three activities in the United States, as follows:

1. Housing starts average 1.3 x 10^6 y/yr (New York Times, 1/23/92). If the average house measures 10 x 30 m and half of them require foundation holes 3 m deep, an equivalent amount of regrading of the landscape, 300 m^3 of earth is moved per house. At a mean density of 2 m^3, house building involves moving ~0.8 Gt/yr (1 Gt = 10^12 t).

2. Mineral production in 1989 totaled 3.2 Gt (U.S. Bureau of the Census, 1991, p. 694). Of this, the three largest products were stone (1.1 Gt), sand and gravel (0.68 Gt, and coal (0.86 Gt). Making an adjustment for the mass of ore moved to yield a unit mass of mineral product increases this to ~3.8 Gt. In making this adjustment, I conservatively estimated that mining of stone and of sand and gravel did not involve movement of material other than that produced, and that in producing coal, the mass of overburden removed was about one-third that of coal produced. For metals, figures on the concentration required to yield an economically viable deposit were obtained from texts such as Denssen (1989).

3. There are ~6.23 x 10^6 km of highways in the United States (U.S. Bureau of the Census, 1991, p. 605). Assume that the principal period of construction of these was during the past 80 years, and that the construction (and reconstruction) rate in the past decade or so has been double the mean. A road that further that ~10 m^3 of earth with a density of 2 t/m^3 is moved per meter of road. This does not include gravel that is mined and hauled to the construction site, as that is included in the mineral production above. Then road construction may involve movement of ~3 Gt/yr.

To extrapolate these figures to worldwide activity, let us assume that the geomorphic activity of humans scales with the gross national product. The GNP of the world as a whole is about four times that of the United States (U.S. Bureau of the Census, 1991, p. 840-841), and so my estimate of the worldwide geomorphic activity of Homo sapiens becomes ~30 Gt/yr. Alternatively, one might make an estimate of the human geomorphic activity with energy consumption. As energy consumption in the United States is 21.7% of the world total (Holdren, 1991), the estimate then rises to 35 Gt/yr.

RIVERS

Long-distance Sediment Transfer

Milliman and Meade (1983) estimated that the worldwide flux of clastic sediment to the oceans in rivers is ~16 Gt/yr, a figure that is generally consistent with other estimates (see Judson, 1968, Table 3). Disolved load contributes an additional 2 to 4 Gt/yr (Judson, 1968: Lipsett, 1972, p. 336), making a total of ~19 Gt/yr.

Judson (1968) estimated that in the absence of human disturbance, the combined clastic and dissolved load of rivers would be only ~9 Gt/yr. Thus human activities, particularly agricultural, may be responsible for as much as ~10 Gt/yr. In Table 1, the last estimate of the human impact on the landscape includes this contribution.

To the estimates of Milliman and Meade (1983) and Judson (1968) should be added the flux of river sediment to interior basins. On the basis of Judson's calculations, this is ~4.6 Gt/yr. Thus, in round numbers, we take the total sediment flux in rivers prior to human intervention to be ~14 Gt/yr, and thereafter ~24 Gt/yr.

Meandering

To estimate the amount of sediment moved in the process of river meandering, we must first estimate the total length of meandering streams in the world. Assume that the average drainage density is 1.5 km of stream channel per square kilometer of land. Assume further that streams of low order do not meander. Then, using relations developed by Horton (1945), calculate the total length of streams of order greater than this limit. In this calculation, I used a bifurcation ratio of 3.6 and a length ratio of 2.1, both of which are reasonable mean values.

Finally, assume that the density of the eroded sediment is 2 t/m^3, the mean migration rate is 0.2 m/yr (Rohr, 1982), and the mean stream depth is 1.5 m. Then, if streams of order 4 or higher are assumed to migrate by meandering, ~39 Gt/yr of sediment are moved by this process (Table 1).

GLACIERS

Rates of erosion by valley glaciers can be as high as 5 to 10 mm/yr, but more typically they are closer to 1 mm/yr, and for continental ice sheets they are an order of magnitude less (Embleton and King, 1975, p. 309-313, 320-321; Andrews, 1972). Glaciers, principally continental ice sheets, now cover about 15.86 x 10^9 km^2 of Earth's surface (Haeberli et al., 1989). Assuming a density of 2.7 t/m^3 for the rock eroded, the total annual erosion rate is ~4.3 Gt/yr. During the last Pleistocene, glacial maximum, ice covered ~38.6 x 10^9 km^2 (Embleton and King, 1975, p. 14), this figure suggests a potential erosion rate of ~10 Gt/yr.

SLOPE PROCESSES

The land area of Earth is ~1.5 x 10^9 km^2. Of this, probably one-third is so flat that slope processes are negligible. Then, if the length of a typical slope, top to bottom, is ~100 m, the total width, parallel to the contour, would be ~1 x 10^7 m. Careful and slope wash can deliver ~3 x 10^8 m^3 of soil per year to the base of a typical slope of unit width (Kirkby, 1967; and unpublished data). Assuming a soil density of 2 t/m^3, the total mass of soil moved to the bottoms of slopes worldwide may be on the order of 0.6 Gt/yr.

WAVE ACTION

Typical rates of littoral drift range from 80,000 to 380,000 m/yr (Herbst and Haney, 1982). Let us assume that the primary sinks for this sediment are submarine canyons that have eroded headward across the continental shelf. The average spacing of submarine canyons along the Atlantic and Pacific coasts of the United States is ~200 km (Kennish, 1989). Thus, along the 0.5

AGENTS continued on p. 217
Agents continued from p. 224

- a 10 km of coastline in the world (Bird and Schwartz, 1985, p. vii) there may be 2500-15,000 m² of sediment with a density of 2 t/m³, the total thus dis-enchanted.

Of course, much of that sediment is delivered to the coast by rivers. Her-lich and Hasey (1982) suggested that actual erosion of beaches and beach cliffs along the coastlines of the world may be only 1.2 x 10¹⁶ m³/yr, or -0.24 x 10⁴ Gt.

WIND

G. Amason (cited by Peterson and Jung, 1971, p. 312) estimated that wind may export -0.5 Gt/yr of dust from the continent. This dust is believed to originate "primarily from arid regions, particularly the Sahara." This estimate is thus broadly consistent with a numerical model developed by Schütz et al. (1981) that predicted a dust transport from the Sahara of 0.26 x 10¹⁶ Gt.

Wind also moves sand, but sand dunes occupy only a small fraction of Earth's surface.

MOUNTAIN BUILDING

Because rather different processes are involved, it is convenient to con- sider orogenic movements on land separately from "mountain building" at midocean ridges. Rates of orogenic uplift of land areas vary widely, so that rather than attempt to estimate a global average rate, I assume that this uplift is roughly balanced by river ero-

The surface temperature of the Stable Isotopic Com- position of Individual Planktonic Foraminiferins.

John T. Dillon Alaska Research Award. John Dillon was particularly noted for his contribution to the under- ing work in the Brooks Range, the results of which have had a major impact on the geologic understanding of this mountain range. The 1994 recipient is Tracy Marie Siebert of Miami University (Ohio), for "Petrologic Significance of Magmatism to Intermediate and Genesis of the North Slope in Alaska, dl-001, U.S. Geological Survey, 1997.

Robert K. Fahnestock Award. This award is given to honor the memory of Ken Fahnestock, who was an exceptional leader for his colleagues in glaciology. It is awarded to the applicant with the best proposal in sediment transport or related aspects of fluvial geology. The 1994 recipient is Laurence C. Smith, Cornell University, for "A New Method of Discharge Estimation for Braided Outwash Streams."

Lipman Research Award. The Lipman Research Fund is a fund held by the NPS and is supported by gifts from the Howard and Jean Lipman Foundation to support student research grants in volcanology and petrology in the western United States and Alaska. The 1994 recipient was John M. Tuzo Wilson, who was one of the first recipients of Research Grants. He supported the research of two students: Julia G. Bryce, Grants continued on p. 226