A Miocene river in northern Arizona and its implications for the Colorado River and Grand Canyon
Not Just Software... RockWare.
For Over 28 Years.

RockWorks®
3D Data Management, Analysis and Visualization
- Powerful measured-section/borehole database for managing:
 - Lithology
 - Stratigraphy
 - Hydrology
 - Geochemistry (e.g. Contaminants)
- Create striplogs, cross-sections, fence diagrams, and block models
- Contour data in 2D and 3D (isosurfaces)
- Extensive on-line help and sample data sets
- Full range and township support

$3,000
Call for pricing

Visual MODFLOW™
- Interfaces to MODFLOW (2000, 2005 and NW), MODPATH, MT3D (MS and 99), RT3D, PHT3D and SEAWAT
- New parallel processing and 64-bit OS support
- Superior 3D graphics using the 3D-Explorer
- Zone Budget, Multi-Node Well, Stream Routing, LAKE and ETS1 Packages
- Pumping optimization using MGO

Standard, Pro and Premium versions available

$1,590
Call for pricing

AquaChem™
The Most Complete System for Water Quality Data Analysis, Plotting, Reporting and Modeling
- Data Management - Customizable MS Access database
- Data Analysis – Numerous calculations, compare/mix samples, correlation matrix, data reliability check
- Statistical Calculations – Trend analysis, outlier tests, test for normality
- Water Quality Modeling – PHREEQC
- Plotting, Mapping & Reporting – 23 industry-standard plots including: Piper, Schoeller, Scatter, Box & Whisker, time series, histogram, Stiff, radial and pie chart

PetraSim™
A Preprocessor and Postprocessor for TOUGH2, T2VOC, TMVOC, TOUGHREACT and TOUGH-FX/HYDRATE
- Model multi-component fluid flow, heat transfer and reactive transport processes
- Saturated and unsaturated conditions
- Fractured and porous media
- Mesh generation, parameter definition, and display of results
- Now supports TOUGH2-MP (parallel version of the TOUGH2 simulator)
- Applications include geothermal studies, carbon sequestration, contaminant transport modeling, vadose zone hydrology and more

Call for pricing

Free trials for most of our products available at www.rockware.com

Follow us on:
Facebook
Twitter
YouTube

RockWare®
Since 1983
303.278.3534 • 800.775.6745 • RockWare.com
4 A Miocene river in northern Arizona and its implications for the Colorado River and Grand Canyon
Ivo Lucchitta, Richard F. Holm, and Baerbel K. Lucchitta

Cover: Oblique view looking NE along Crooked Ridge from The Gap, carved into the upturned Echo Cliffs, toward White Mesa in the distance. Darker part of the ridge in the foreground is mantled by river deposits. Image is composite of Landsat and shaded-relief DEM data with 10 m spatial resolution and 2× vertical exaggeration, obtained from the USGS EROS Data Center’s seamless server. See related article, p. 4–10.
A Miocene river in northern Arizona and its implications for the Colorado River and Grand Canyon

Ivo Lucchitta, U.S. Geological Survey, Flagstaff, Arizona 86001, USA, and Museum of Northern Arizona, Flagstaff, Arizona 86001, USA, ilucchitta@gmail.com; Richard F. Holm, Northern Arizona University, Flagstaff, Arizona 86011, USA; Baerbel K. Lucchitta, U.S. Geological Survey, Flagstaff, Arizona 86001, USA.

ABSTRACT

The southwesterly course of the pre–late Miocene Crooked Ridge River can be traced continuously for 48 km and discontinuously for 91 km in northern Arizona. It is visible today in inverted relief. Pebbles in the river gravel came from at least as far northeast as the San Juan Mountains. The river valley was carved out of easily eroded Jurassic and Cretaceous rocks, whose debris overloaded the river with abundant detritus, possibly steepening the gradient. After the river became inactive, the regional drainage network was rearranged twice, and the Four Corners region was lowered by erosion 1–2 km. The river provides constraints on the history of the Colorado River and Grand Canyon; its continuation into lakes in Arizona or Utah is unlikely, as is integration of the Colorado River through Grand Canyon by lake spillover. The downstream course of the river was probably across the Kaibab Arch in a valley roughly coincident with the present eastern Grand Canyon.

INTRODUCTION

A turning point in the long history of thought about the origin and age of the Colorado River and Grand Canyon came in the mid-1960s and 1970s when McKee et al. (1967) and Lucchitta (1975, 1989) proposed a polyphase history in which an upper river flowing on the Colorado Plateau was captured by a young lower river that extended itself by headward erosion from the just-opened Gulf of California (Durham and Allison, 1960). This model implied a post-5–6 Ma age for the integrated Colorado River and Grand Canyon.

Recent work mostly accepts a complex history, but some rejects a young age or the concept of integration through headward erosion. Data from Crooked Ridge River provide constraints on several of the new proposals, including (1) that an ancestral river flowed into or out of “Hopí Lake” in a north or northwesterly direction (see below); (2) that an ancestral river flowed northward along the present course of Marble and Glen Canyons; and (3) that the Colorado River was integrated through Grand Canyon by the spillover of Hopí Lake.

Scattered exposures of gravel in northern Arizona have long been known (e.g., Cooley et al., 1969; Hunt, 1969; R. Hereford, 1975, personal commun.), but integration of these observations into a coherent drainage system only became possible with the advent of detailed topographic maps, and especially satellite and digital elevation model (DEM) data. Such images presented here are composites of Landsat and shaded-relief DEM data with 10–30 m resolution and 2× vertical exaggeration, obtained from the U.S. Geological Survey Eros Data Center's seamless server.

PHYSICAL CHARACTERISTICS OF CROOKED RIDGE

Crooked Ridge extends continuously across the Kaibito Plateau of northern Arizona from the eastern edge of White Mesa to The Gap, a large wind gap carved into the Jurassic Navajo Sandstone at the Echo Cliffs (Figs. 1 and 2). The ridge is 48 km long in a straight line, and 55 km long along its trace. An isolated remnant of river deposits with distinctive clasts similar to those on Crooked Ridge occurs near the northwest corner of Black Mesa, ~43 km from the nearest exposures on White Mesa and approximately on the same gradient and trend (Figs. 1 and DR11). The river course can thus be traced for 91 km.

The sinuous Crooked Ridge is an example of inverted relief that came about because deposits in the floodplain of an ancient river were protected by a cap of massive 1–2 m pedogenic Stage V calcrite, whereas the rest of the valley was not so protected and has been preferentially lowered by erosion (Figs. 3 and 4).

Remnants of the river deposits now occur on about a quarter of the ridge’s length westward from White Mesa and about a third of the length eastward from The Gap (Figs. 1, 2, and DR1). The intervening part has either fragmentary river deposits or none. The capped parts of the ridge rise as much as 110 m above the adjacent landscape, whereas the eroded bedrock parts are as much as 50–80 m above it. On satellite images, the preserved river deposits are as much as ~1000 m wide, though generally less.
Figure 2. Oblique view of Kaibito Plateau with Crooked Ridge in center, looking north. Approximate straight-line length along the ridge from east edge of White Mesa to The Gap is 48 km. North side of old river valley is clearly visible. Wildcat Peak is a monchiquite intrusive probably 8–6 Ma. No monchiquite clasts were found in the gravel, even though the peak is less than 13 km from Crooked Ridge.

Figure 3. Oblique view looking SW along Crooked Ridge to The Gap 48 km away in a straight line. Ridge follows course of the ancient river in inverted relief. Wider parts of ridge in foreground and at far end are mantled with river deposits; parts in between are primarily bedrock.

Figure 4. Exposure of fluvial sediments on Crooked Ridge, 9 km northeast of The Gap. The exposure consists primarily of sand, with subordinate mud and clay. Gravel is common near top, also within light-colored calcite cap. Channeling is common.
Along most of the Kaibito Plateau reach, the bedrock for the Crooked Ridge valley is the relatively weak upper part of the Navajo Sandstone and the easily eroded Carmel Formation at the base of the San Rafael Group. These rocks allowed formation of a wide river valley. Evidence for this is visible on satellite images, where the north edge of the old valley is marked by a south-facing 150 m scarp that parallels the trend of Crooked Ridge and truncates the south-southeast-trending Mormon Ridges (Figs. 2 and 3).

The ill-defined south edge of the valley probably is along the northern end of bedrock prominences such as Preston Mesa (Fig. 2) and the southern part of White Mesa. This alignment parallels both Crooked Ridge and the northern edge of the valley. If this alignment is taken as the south edge, the valley may have been as much as 5–10 km wide across most of the Kaibito Plateau.

At The Gap (Figs. 1 and 2), the valley crosses the Echo Cliffs ridge, formed by the resistant Navajo Sandstone upturned along the Echo Cliffs monocline. This defile is visible today in cross section. The present rim-to-rim width of the gap is 3.4 km and its depth is 290 m, as measured on satellite images and topographic maps.

STRUCTURAL AND STRATIGRAPHIC FEATURES

Between Black Mesa and White Mesa, the ancient drainage crosses Klethla Valley at a low angle. This is a strike valley along the south continuation of the Tsegi–Comb Ridge system of monoclinal flexures, a part of a major structural trend that continues northward for ~250 km along Comb Ridge and separates the Monument upwarp to the northwest from structurally low areas to the southeast (Figs. 1, 5, and DR2 [see footnote 1]).

On Kaibito Plateau, Crooked Ridge crosses several down-to-the-east monoclinal flexures (Fig. DR2). West of Echo Cliffs, the Kaibab Plateau is a north- and south-plunging dome (Fig. 1) bounded on the east by the East Kaibab monocline, which also has down-to-the-east displacement. The Colorado River forms a great bend that follows the strike of the strata around the south-plunging part of the dome. The effect of the various monoclines is to expose strata successively lower in the section toward the west.

The remnant of fluvial deposits on Black Mesa rests on the Wepo Formation in the middle of the Upper Cretaceous Mesaverde Group. The ancient valley floors are not preserved here but must have been composed of Upper Cretaceous rocks above the Mesaverde Group, perhaps correlating with the Wahweap Formation of the Kaiparowits Plateau ~110 km northwest in southern Utah. This unit probably also formed the valley floor and sides northeast of Black Mesa toward the San Juan Mountains.

The sides of the old valley between Black Mesa and White Mesa, now occupied by Klethla Valley, were in the Mesaverde Group and the underlying Mancos Shale and Dakota Sandstone of Cretaceous age as well as the Morrison Formation and Entrada Sandstone of Jurassic age.

White Mesa is capped today by the Entrada Sandstone and thin remnants of the Cretaceous Dakota Formation (F. Peterson, 2010, personal commun.). The reach between White Mesa and The Gap is rimmed by the upper part of the Jurassic Navajo Sandstone and the Carmel Formation, capped locally by small remnants of Entrada. In Crooked Ridge time, Jurassic and Cretaceous rocks most likely rimmed all these parts of the valley.

The abundance of easily eroded rocks along the river course likely influenced the character of the river.

LITHOLOGIC CHARACTERISTICS AND PROVENANCE OF TRANSPORTED MATERIAL

A minimum of 20 m of fluvial material is exposed on Crooked Ridge. Good exposures show that the bulk of the deposits consist of sand containing stringers and interbeds of gravel, mud, and clay. Gravel is more abundant near the top of several exposures. Channeling at <1 m scale is common (Fig. 4), as is cross bedding that shows a southwest flow direction (noted by us and by Hunt, 1969). The sand is weakly indurated, fine-to medium-grained but locally medium- to coarse-grained, and subrounded to subangular. A small percentage of grains are fine, very well rounded, and frosted, and were probably derived from Mesozoic eolianites. The scarcity of eolian sand suggests that the Oligocene Chuska erg of Cather et al. (2006) either was never present in the area traversed by Crooked Ridge River or was eroded by the time the river was active.

Composition, sampling methods, sampling locations, and inferred sources of gravel are shown in Tables DR1 and DR2 (see footnote 1). Clasts are considered distinctive or non-distinctive according to the level of confidence in assessing provenance; both locally derived and far-traveled or exotic clasts are present. Most locally derived clasts are quartz sandstones from the upper Mesozoic formations that formed the valley sides on the Kaibito Plateau, Black Mesa, and upstream from Black Mesa (Harshbarger et al., 1958; Page and Repenning, 1958; Cooley et al., 1969). Also common are petrified wood and fossiliferous limey sandstone, both derived from upper Mesozoic formations. Typically, these clasts are subangular to subrounded; maximum size generally is ~30 cm, but a few boulders, which probably rolled in from the valley sides, reach 100 cm in diameter. Exotic clasts are subrounded to rounded, mostly 1–3 cm in diameter, but reach 10 cm.

Exotic clasts include many types of volcanic, hypabyssal, plutonic, and metamorphic lithologies; petrographic characteristics link them with specific sources northeast of Crooked Ridge and
Black Mesa at least as far as the San Juan Mountains (Table DR2). Minettes came from the late Oligocene to early Miocene dikes and diatremes of the Navajo volcanic field, most likely from the Monument Valley section (Laughlin et al., 1986, and references therein) (Fig. 5). Clasts of granite, pegmatite, and perthitic microcline also probably came from intrusions in Monument Valley, where these lithologies are especially common as xenoliths.

The intermediate porphyries are strikingly similar to rocks reported in laccolithic centers of the Colorado Plateau, including the Alcaba, Carrizo, Henry, La Plata, La Sal, and Ute Mountains (Friedman and Huffman, 1998, and references therein), and also present at Wildcat Peak, not far south of Crooked Ridge. These two major rearrangements of the drainage network since Crooked Ridge time require an indeterminate time. The first of these is the development of Klethla Valley (Fig. 1), which cuts across the course of the ancient river. Erosion of Upper Cretaceous and possibly early Tertiary strata unroofed these distinctive porphyries in the Crooked Ridge River drainage basin and fed pebbles into the river.

All the distinctive clasts of metamorphic rocks can be matched with Proterozoic rocks mapped in the Needle Mountains (Fig. 5), where today they crop out at elevations as high as 4000 m. The quartz metaconglomerate and metawacke are comparable with some of the lithologies in the Vallecito Conglomerate and the Irving Formation, and the fine quartzofeldspathic gneiss matches the Twilight Gneiss (Larson and Cross, 1956; Barker, 1969).

Felsic lava flows, welded tuffs, andesites, lalites, and hydrothermal mineral deposits are widespread and abundant in the Oligocene San Juan volcanic field (Lipman et al., 1978). The distinctive clasts of these lithologies, as well as most if not all the non-distinctive clasts of the same type, are likely to have come from this region.

The pebbles of crystal tuff and altered rhyolite and andesite are not likely to be reworked from older gravel deposits because the former are friable and the latter are soft. Pebbles of rhyolitic vitrophyre are not likely to be reworked from the Chinle and Morrison Formations because they are glassy and not devitrified as are those from the Mesozoic formations (Cadigan, 1972; Thorndarson et al., 1972; Dodge, 1973). Notably absent from the samples collected at Crooked Ridge and Black Mesa are clasts of limestone similar to the Kaibab Formation on the Kaibab Plateau, red sandstone similar to that of Triassic rocks on the Colorado Plateau, red sandstone similar to the Irving Formation, and the fine quartzofeldspathic gneiss matches the Twilight Gneiss (Larson and Cross, 1956; Barker, 1969).

Another indirect method involves Wildcat Peak (Fig. 2), a monchique intrusive that is part of the Tuba volcanic field (Akers et al., 1971). Wildcat Peak has not been dated, but volcanic rocks of this composition have been dated in the Hopi Buttes at 6–8.5 Ma (Damon and Spencer, 2001), suggesting a similar age for this intrusive. No monchique clasts have been found in the gravel even though Wildcat Peak is <13 km from Crooked Ridge, toward which tributary streams near Wildcat Peak presumably flowed. Therefore, we infer that the river became inactive before the intrusive was emplaced or unroofed in the late Miocene.

Finally, removal of 1–2 km of strata from the area of the laccolithic intrusives since they were first unroofed (see below), must have taken a substantial time. Such deep erosion is in agreement with results obtained by other techniques (e.g., Pederson et al., 2011).

On the basis of these considerations, we infer that the Crooked Ridge River was active in mid-Miocene (and perhaps earlier?) time, in keeping with Hunt's (1969) suggestion concerning the age of paleodrainages in the region. The river became inactive in the late Miocene.

LONGITUDINAL PROFILE OF THE RIVER

The farthest east and highest exposure of river deposits is on Black Mesa at 2240 m; the farthest west and lowest near The Gap is at ~1700 m. Over the 91 km that Crooked Ridge River can be traced from Black Mesa to The Gap, the river deposits drop 530 m, giving an average present-day gradient of 5.8 m/km. The gradient of individual reaches varies considerably (Fig. DR1), probably reflecting differences in the rocks into which the valley was carved, structural features such as monoclines, and constrictions such as The Gap in the river's path. The relatively high gradient can plausibly be ascribed to overloading by sediment derived from the easily eroded Jurassic and Cretaceous rocks that formed the valley sides upstream from The Gap. Internal structures of the river sediments suggest a braided stream and support this interpretation.

An alternative explanation for the steep gradient of the deposits is post-depositional tilting of the channel due to crustal warping such as a “bull’s-eye” of isostatic unloading to the north (Lazear et al., 2011; Pederson et al., 2011) or mantle dynamics (Robert et al., 2011; Moucha et al., 2009). However, the inferred bull’s-eye is in the Canyonlands country north to northwest of Crooked Ridge River, so the river’s course is essentially tangential to the uplift contours and should be little affected by this unloading.

The mantle-dynamics studies suggest northeast tilting for nearly all the Miocene and southwest tilting since then. Therefore, the river would have been tilted first northeast and then southwest. It is currently not possible to evaluate the net effect of these tilting events on the gradient of Crooked Ridge River.

The erosional history of the Colorado Plateau in the eastern Grand Canyon region shows a wave of erosion starting in the southwest and progressing northeast with time, mostly through cliff retreat at 4–8 km/Ma (Lucchitta, 1975; Holm, 2001; Lucchitta and Jeanne, 2001). This erosion would cause northeast tilting of the region because of isostatic uplift and may have decreased the original gradient of the nearby Crooked Ridge River.

In conclusion, the steep gradient of the river deposits is plausibly explained by overloading, although tectonic adjustments can neither be proved nor ruled out at this time.

COMPARISON WITH OTHER RIVERS

It is useful to compare the characteristics of Crooked Ridge River with those of other present-day overloaded streams with similar configurations in order to estimate the gradient and possible discharge of the ancient river. Two such streams are a reach of the Animas River upstream from Durango and the San Juan River upstream from Pagosa Springs, both in southwest Colorado. Data for these streams and for Crooked Ridge River are in Table DR3 (see footnote 1).
The comparison suggests that a steep gradient for the overloaded Crooked Ridge River is not unreasonable, and that (together with the exotic clasts) the ancient river was not a minor local wash, but a river of regional extent whose discharge was at least comparable to those of today’s Animas and upper San Juan Rivers.

EROSIONAL LOWERING

The relative scarcity of porphyry clasts in Crooked Ridge gravel contrasts markedly with their abundance in even the oldest terraces of the Colorado River. We infer that the laccolithic intrusives were less exposed when the Crooked Ridge River was active than they are today and that some were not exposed at all (Eckel et al., 1949). Today, a few of these rocks are exposed at altitudes as high as 4000 m, and many are at 3000–3500 m; in Crooked Ridge River time, only the highest would have been exposed. Hence, the scarcity of these clasts in the gravel suggests a topographic surface in the 3500+ m range. Today, the region in southwest Colorado and southeast Utah near the intrusives is at 1500–2000 m, suggesting that 1–2 km of strata has been removed since Crooked Ridge River time.

PERMISSIBLE AND IMPERMISSIBLE PALEODRAINAGES

The middle Miocene to lowermost Pliocene (?) Bidahochi Formation figures prominently in hypotheses on the history and integration of the Colorado River on the Colorado Plateau. The formation was deposited in Bidahochi basin, roughly centered in the Hopi Buttes (Fig. 1). The origin of the formation is controversial. Spencer et al. (2008) proposed that it was deposited in a deep “Hopi Lake” large enough to potentially extend into southern Utah. The postulated lake was the sump of a large drainage system that crossed the Colorado Plateau and headed in the Snake River basin, as inferred from fossil fish of Snake River affinities and adapted to swift-flowing rivers. The lake would eventually have spilled over into a drainage along the present Grand Canyon, initiating a top-down cascade of spillovers that integrated the Colorado River in its present course through Grand Canyon and the lower Colorado region (e.g., Meek and Douglass, 2001; Scarborough, 2001).

Others (e.g., Dallegge et al., 2001; Dickinson, 2011) propose that the formation was deposited not in a deep lake, but rather in shallow and ephemeral ones that at times probably were playas and were filled by fluvial aggradation.

Crooked Ridge River provides useful constraints on the Bidahochi Formation issue. The southwesterly course of the river from the San Juan Mountains to the Kaibab upwarp makes it impossible for rivers such as an ancestral Colorado to flow southward or southeastward from western Colorado or eastern Utah into “Hopi Lake” or, conversely northward or northwestward from “Hopi Lake” (Fig. 6).

It is difficult to reconcile the existence of a large lake near (let alone across) the well-established Crooked Ridge River, which presumably had a developed drainage network and had cut down to a lower elevation than the lake. It is also difficult to envision a sudden, catastrophic, and canyon-forming spillover of the lake in an area where the valley of the Crooked Ridge River already existed. Even had the spillover taken place, the resulting flow would have been along the course of Crooked Ridge River, not through western Grand Canyon.

As the current evaluations of tilting are speculative, we use the 1700 m altitude of Crooked Ridge River sediments near The Gap as a preliminary constraint on possible continuations of Crooked Ridge River downstream, where no deposits are preserved (Fig. 6).

Figure 6. Digital elevation model image showing elevations above (brown) and below (blue) 1700 m, the elevation of Crooked Ridge gravel at The Gap. Brown areas are excluded from possible continuation of river; blue areas are permissible continuations assuming no gradient for the river (boundary condition). Hopi Buttes are mostly excluded. Headwaters of Little Colorado River (off image) are excluded. Orange lines are permissible river courses; yellow lines, impermissible. Orange lines with query denote possible ancestral Colorado and Little Colorado Rivers.

Accordingly, the Bidahochi basin is part of the excluded terrain, because the base of the Bidahochi Formation is at ~1750 m (Love, 1989; Cather et al., 2008). Thus, it is unlikely that the Crooked Ridge River would have filled the hypothetical Hopi Lake even in the absence of a gradient.

Figure 6 also shows that the only possible continuation beyond The Gap is southward along the alignment of the Echo Cliffs, then westward to near the present-day confluence of the Colorado and Little Colorado Rivers. From this point, the river could flow either north along the alignment of the present Marble Canyon, or west along the alignment of the present eastern Grand Canyon.

If the ancient river flowed north, possibly to a hypothetical and undocumented “Glen Lake” (Hill and Ranney, 2008), its current average gradient would place it at an elevation of 920 m at Lees Ferry, which is below even the present Colorado River elevation there. If the gradient had been only 3 m/km, the river would have been ~350 m above present river grade in the Miocene. However, the present river grade is much lower than it was in Crooked River time because the Colorado was ~200 m higher just 525–600 ka ago (Lucchitta, unpub. field data, 1998; Lucchitta et al., 2000, 2001), giving an incision rate of 380–330 m/Ma. So even at 1 Ma the Colorado River grade would have been at that of the Crooked Ridge River or higher. The incision is the product of vigorous post–5 Ma downcutting by the Colorado River. Projecting the rate over this interval would bring the river elevation at Lees Ferry to 1600–1900 m above present river grade, or ~1 km above the elevation of the Crooked Ridge River at The Gap. Neither distant nor more local warping is likely to overcome such a topographic disparity.

We conclude that the Crooked Ridge River was unlikely to flow northward from the area of The Gap. On the other hand, our data do not preclude an ancient river such as the ancestral Colorado River flowing southwestward along approximately its present course but at a higher elevation, to join the Crooked Ridge River in the area of the present-day confluence of the Little Colorado River.
A course westward is possible along the alignment of the present eastern Grand Canyon (Figs. 6 and 7). This potential route was proposed long ago by Babenroth and Strahler (1945) and Lucchitta (1975, 1989) and, more recently, by Scarborough (2001) and Flow- ers et al. (2008). The greater width and complexity of the Grand Canyon here supports an older age than for other parts of the canyon. Most likely, the old course was in a broad valley that followed the curving strike of strata around the south-plunging part of the Kaibab arch. Valley rims were in Mesozoic rocks and the floor was incised some hundreds of meters below the top of the Kaibab Limestone.

Regarding the continuation of the Crooked Ridge River beyond the Kaibab Plateau, a course along western Grand Canyon and the Lake Mead area is precluded by widespread and well documented Miocene interior-basin deposits at the mouth of the Grand Canyon (Longwell, 1936; Lucchitta, 1966, 1967, 1972, 1989). We offer instead the speculation that the river flowed northward (Fig. 6) to near St. George, Utah, then generally northward along the east flank of the Sevier orogenic belt, eventually reaching the Snake River basin. This would allow fish of Snake River affinities (Spencer et al., 2008) to reach the Colorado Plateau area near Crooked Ridge River.

CONCLUSIONS
1. Crooked Ridge River was a substantial stream of northern Arizona that headed at least as far northeast as the San Juan Mountains of Colorado. The age of the river is poorly constrained. In keeping with Hunt (1969) and our findings, we think it was of middle Miocene age, and possibly older. The river probably became inactive in late Miocene time.
2. The clasts of the river are not reworked from some older river because several of the clast lithologies would not survive recycling.
3. Channel characteristics and gradient compare favorably with two substantial present-day rivers in the region.
4. The ancient river bore no relation to the present-day drainage network. On the contrary, two entirely different drainage configurations have developed since Crooked Ridge River time.
5. The southwesterly course of the river from the San Juan Mountains to the Kaibab upwarp makes it impossible for other rivers such as an ancestral Colorado to flow across the Crooked Ridge River into or away from northeast Arizona and lakes such as Hopi Lake, nor could it empty into these lakes.
6. The Crooked Ridge River could not flow northward along the present course of Marble Canyon.
7. A southwest- or south-flowing river (ancestral Colorado?), topographically much higher than the present river, could have joined Crooked Ridge River somewhere near the present mouth of the Little Colorado River.
8. A westward continuation of the river(s) along the alignment of the present eastern Grand Canyon around the Kaibab arch is possible and our favored alternative.
9. It is unlikely that a lake spillover would have integrated the Colorado River through the western Grand Canyon because an older and well developed river system was already in place that did not flow through the western Grand Canyon into the upper Lake Mead area.
10. Since the river became inactive, the Four Corners region has been lowered erosionally by 1–2 km.

ACKNOWLEDGMENTS
We thank Fred Peterson and Marith Reheis for their helpful reviews, and Trent Hare for indispensable help with the graphics.

REFERENCES CITED

Larson, E.S., and Cross, W., 1956, Geology and petrology of the San Juan region south-in The Colorado River.

~ This paper is dedicated to the memory of Charlie Hunt, Chester Longwell, and Eddie McKee—On whose shoulders we stand. ~

Manuscript received 23 Feb. 2011; accepted 20 July 2011.
Mapping America: Exploring the Continent is a beautifully illustrated survey of America’s cartographic landscape, featuring an array of maps that document its development, from early engravings, to the latest satellite technology.

Featuring four centuries of maps that depict the changing landscape of North America, Mapping America charts the continent through numerous landmark events and uprisings, including the Civil War, the Civil Rights Movement, and more recent concerns, such as the environment and terrorism. From early maps depicting the country’s colonial beginnings through contemporary maps of America today, the book presents the reader with a multifaceted view of the North American physical and cultural landscape. Mapping America features maps showing the electoral routes of Presidential campaigns, census maps displaying the diminishing native communities and other fascinating depictions of contemporary America.
2012 GSA Medals and Awards

Penrose Medal

The Penrose Medal was established in 1927 by R.A.F. Penrose Jr. to be awarded in recognition of eminent research in pure geology, for outstanding original contributions, or for achievements that mark a major advance in the science of geology. This award is made only at the discretion of the GSA Council, and nominees may or may not be members of the Society. Penrose’s sole objective was to encourage original work in purely scientific geology, which is interpreted as applying to all scientific disciplines represented by GSA. Scientific achievements should be considered rather than contributions in teaching, administration, or service. Mid-career scientists who have already made exceptional contributions should be given full consideration for the award.

Day Medal

The Day Medal was established in 1948 by Arthur L. Day to recognize outstanding distinction in contributing to geologic knowledge through the application of physics and chemistry to the solution of geologic problems. Day’s intent was to recognize outstanding achievement and inspire further effort rather than reward a distinguished career; therefore, scientific achievements should be considered rather than contributions in teaching, administration, or service.

Young Scientist Award (Donath Medal)

The Young Scientist Award was established in 1988 to be awarded to a young scientist (35 years or younger throughout the year in which the award is to be presented—for 2012, only those candidates born on or after 1 January 1977 are eligible) for outstanding achievement in contributing to geologic knowledge through original research that marks a major advance in the earth sciences. The award consists of a gold medal (the Donath Medal) and an honorarium.

How to Nominate

To ensure thorough consideration, please follow these nomination instructions carefully; additional information supplied will not enhance the nomination.

1. Nomination form: Please go to https://rock.geosociety.org/forms/Awardform.asp to submit the form online or for hardcopy download to submit via post.
2. Supporting documents, to be submitted as e-mail attachments or via post:
 - curriculum vitae;
 - summary (300 words or less) of the scientific contributions to geology that qualify the candidate for the award;
 - selected bibliography of no more than 20 titles (note: for the Donath Medal, only 10 titles are required);
 - Penrose and Donath Medals: letters from each of five GSA Fellows or members in addition to the person making the nomination.
 - Day Medal: letters from five scientists, at least three of whom are GSA Fellows or members, with up to two from fellows or members of the Mineralogical Society of America, Geochemical Society, or American Geophysical Union.

Award Notes

Candidates whose names are submitted by the respective award committees to GSA Council but who do not receive an award will remain under consideration by those committees for three years. For those still under consideration, it is recommended that an updated nomination letter be sent to GSA.

All nomination forms and submission instructions are online at www.geosociety.org/awards/. Nomination forms and instructions may also be obtained from GSA Grants, Awards, and Recognition, P.O. Box 9140, 3300 Penrose Place, Boulder, CO 80301-9140, USA, +1-303-357-1028, awards@geosociety.org.
The deadline for receipt of all medal, award, and recognition nominations is 1 February 2012.

Call for Nominations

2012 GSA Medals and Awards

GSA Public Service Award

GSA Council established this award in 1998 in honor of Eugene and Carolyn Shoemaker. The Public Service Award recognizes contributions that have materially enhanced the public’s understanding of the earth sciences or have significantly served decision makers in the application of scientific and technical information to public affairs and earth science–related public policy. This may be accomplished by individual achievement in the following:

- authorship of education materials of high scientific quality that have enjoyed widespread use and acclaim among educators or the general public;
- acclaimed presentations (books and other publications, mass and electronic media, or public presentations, including lectures) that have expanded public awareness of the earth sciences;
- authorship of technical publications that have significantly advanced scientific concepts or techniques applicable to the resolution of earth-resource or environmental issues of public concern; or
- other individual accomplishments that have advanced the earth sciences in the public interest.

The award will normally go to a GSA member, with exceptions approved by Council, and may be presented posthumously to a descendant of the awardee.

How to Nominate

1. Nomination form: Please go to https://rock.geosociety.org/forms/Awardform.asp to submit the form online or for hardcopy download to submit via post.

2. Supporting documents, to be submitted as e-mail attachments or via post:
 - curriculum vitae;
 - letter of nomination (300 words or less);
 - brief biographical sketch that clearly demonstrates the applicability of the selection criteria; and
 - selected bibliography of no more than 10 titles.

The Bromery Award for the Minorities

This award, established by Randolph W. (Bill) and Cecile T. Bromery through the GSA Foundation in 1999, recognizes a member of a minority group, preferably African Americans, who qualifies under at least one of the following categories:

1. Nominee has made significant contributions to research in the geological sciences, as exemplified by
 - publications that have had a measurable impact on the geosciences;
 - outstanding original contributions or achievements that mark a major advance in the geosciences; and
 - an outstanding lifetime career that demonstrates leadership in geoscience research.

2. Nominee has been instrumental in opening the geoscience field to other minorities, as exemplified by
 - demonstrable contributions in teaching or mentoring that have enhanced the professional growth of minority geoscientists;
 - outstanding lifetime career service in a role that has highlighted the contributions of minorities in advancing the geosciences; and
 - authorship of educational materials of high scientific quality that have enjoyed widespread use and acclaim among educators and/or the general public.

How to Nominate

1. Nomination form: Please go to http://www.geosociety.org/awards/nominations-Bromery.htm to submit the form online or for hardcopy download to submit via post.

2. Supporting documents, to be submitted as e-mail attachments or via post:
 - curriculum vitae;
 - letter of nomination (300 words or less);
 - letters from three scientists with at least two from GSA Fellows or Members and one from a member of another professional geoscience organization; and
 - optional selected bibliography of no more than 10 titles.
2012 GSA Medals and Awards

GSA Distinguished Service Award

GSA Council established this award in 1988 to recognize individuals for their exceptional service to the Society. GSA members, Fellows, associates, and employees may be nominated for consideration, and any GSA member or employee may submit a nomination.

How to Nominate

1. Nomination form: Please go to https://rock.geosociety.org/forms/Awardform.asp to submit the form online or for hardcopy download to submit via post.
2. Supporting documents, to be submitted as e-mail attachments or via post:
 - curriculum vitae;
 - letter of nomination (300 words or less);
 - brief biographical sketch that clearly demonstrates the applicability of the selection criteria; and
 - optional selected bibliography of no more than 10 titles.

GSA Fellowship

Fellowship is an honor bestowed at each spring GSA Council meeting upon the geoscience profession's finest. Only GSA Fellows may be primary nominators, and Fellows may support only two nominees per election cycle (with only one as primary nominator). A GSA member who is not a Fellow may not be a primary nominator, but may second the nominations of up to two nominees per election cycle.

The primary nominator is responsible for collecting the complete nomination packet (including letters of support), which should then be submitted as one e-mail (with supporting documents as attachments) or as one package via post.

How to Nominate

1. Submit the nomination form online at www.geosociety.org/members/fellow.htm or download a hardcopy.
2. Supporting documents, to be submitted by the primary nominator as e-mail attachments or as one package via post:
 - curriculum vitae;
 - letter of nomination (300 words or less);
 - brief biographical sketch that clearly demonstrates the applicability of the selection criteria; and
 - optional selected bibliography of no more than 10 titles.

Subaru Outstanding Woman in Science Award

Supported by the Doris M. Curtis Fund

This award recognizes a woman who has had a major impact on the field of the geosciences based on her Ph.D. research. Women are eligible for this award during the first three years following receipt of their Ph.D.

How to Nominate

1. Nomination form: Please go to https://rock.geosociety.org/forms/Awardform.asp to submit the form online or for hardcopy download to submit via post.
2. Supporting documents, to be submitted as e-mail attachments or via post:
 - curriculum vitae;
 - letter of nomination that clearly states how the Ph.D. research has impacted the geosciences;
 - selected bibliography of no more than 10 titles; and
 - dissertation title and abstract.

AGI Medal in Memory of Ian Campbell

This medal recognizes singular performance in and contribution to the profession of geology. Candidates are measured against the distinguished career of Ian Campbell, whose service to the profession touched virtually every facet of the geosciences. Campbell was a most uncommon man of remarkable accomplishment and widespread influence, and in his career as a geologist, educator, administrator, and public servant, he was noted for his candor and integrity. Nominate online at www.agiweb.org/direct/awards.html.

AGI Marcus Milling Legendary Geoscientist Medal

This medal recognizes the consistent high-quality scientific achievements of a senior geoscientist as well the lasting and historic value of his or her service to the earth sciences. Those eligible are geoscientists nearing completion of or having completed full-time regular employment who have been recognized for accomplishments in their field(s) of expertise by professional societies, universities, or other organizations. Nominate online at www.agiweb.org/direct/awards.html.

The deadline for receipt of all GSA medal, award, and recognition nominations is 1 February 2012.
2012 National Awards

GSA members are encouraged to nominate colleagues for the following awards.

The William T. Pecora Award, sponsored jointly by NASA and the U.S. Dept. of the Interior, recognizes outstanding contributions by individuals or groups toward understanding Earth by means of remote sensing. The award recognizes the work of those in the scientific and technical community as well as those involved in the practical application of remote sensing. Consideration will be given to sustained or single contributions of major importance to the art and/or science of understanding Earth through observations from space. Learn more at http://remotesensing.usgs.gov/pecora.php.

The National Medal of Science is awarded by the President of the United States to individuals “deserving of special recognition by reason of their outstanding contributions to knowledge in the physical, biological, mathematical, engineering, or social and behavioral sciences.” The award committee gives special attention to younger U.S. scientists and engineers, who may now be reaching a point at which their contributions merit recognition, as well as to outstanding women and minority scientists. Learn more at www.nsf.gov/od/nms/medal.jsp.

The Vannevar Bush Award is presented periodically to a senior statesperson of science and technology who, through public service in science and technology, has made an outstanding contribution toward the welfare of humankind and to the United States. Nominations should be accompanied by a complete biography and a brief citation summarizing the nominee’s scientific or technological contributions to our national welfare in promotion of the progress of science. Learn more at www.nsf.gov/nsb/awards/bush.jsp.

The Alan T. Waterman Award is presented annually by the National Science Foundation (NSF) and the National Science Board to an outstanding young researcher in any field of science or engineering supported by the NSF. Candidates must be U.S. citizens or permanent residents 35 years of age or younger OR not more than five years beyond receipt of a Ph.D. by 31 Dec. of the year in which they are nominated. Candidates should have completed sufficient scientific or engineering research to have demonstrated outstanding capability and exceptional promise for significant future achievement through personal accomplishments. The Waterman Award complements the Vannevar Bush Award; both are designed to encourage individuals to seek the highest levels of achievement in science, engineering, and service to humanity. Learn more at www.nsf.gov/od/waterman/waterman.jsp.

The G.K. Warren Prize is awarded by the National Academy of Sciences for noteworthy and distinguished accomplishment in fluviatile geology and closely related aspects of the geological sciences. Learn more at www.nasonline.org/site/PageServer?pagename=AWARDS_warren.

2012 John C. Frye Environmental Geology Award

Deadline: 31 March 2012

In cooperation with the Association of American State Geologists (AASG), GSA makes an annual award for the best paper on environmental geology published either by GSA or by one of the state geological surveys. Please send nominations to GSA Grants, Awards, and Recognition, P.O. Box 9140, Boulder, CO 80301-9140, USA.

Criteria for Nomination
1. The paper must be selected from GSA or state geological survey publications;
2. It must have been published during the preceding three full calendar years; and
3. The nomination must include a paragraph stating the pertinence of the paper.

Basis for Selection
Each paper will be judged on its uniqueness or significance as a model of its type of work along with its overall worthiness. It is preferred that the paper be directly applicable to informed laypersons (e.g., planners, engineers). In addition, nominated papers must:

- establish an environmental problem or need;
- provide substantive information on the basic geology or geologic process pertinent to the problem;
- relate the geology to the problem or need;
- suggest solutions or provide appropriate land use recommendations based on the geology;
- present the information in a manner that is understandable and directly usable by geologists; and
- address the environmental need or resolve the problem.

2011 Award Named

The 2011 award will be bestowed during the 2011 GSA Annual Meeting & Exposition on Tues., 11 Oct., at the Hilton Minneapolis (Marquette VI, 7 a.m.–noon) for Mapping of Holocene River Alluvium along the San Pedro River, Aravaipa Creek, and Babocomari River, Southeastern Arizona, 2009, DM-RM-1, 6 sheets, map scale 1:24,000, 77 p., by Joseph P. Cook, Ann Youberg, and Philip A. Pearthree, Jill A. Onken, Bryan J. MacFarlane, David E. Haddad, Erica R. Bigio, and Andrew L. Kowler.
Campus Reps: GSA Thanks You!

The Society recognizes the following members for their contributions and service as GSA Campus Representatives. As Campus Reps, these members on two-and four-year college and university campuses around the world provide valuable information regarding GSA programs, opportunities, and deadlines to geoscience students and their colleagues, and act as ambassadors for GSA.

B. Abalos, Univ. del Puis Vasco, Spain
James S. Aber, Emporia State Univ., USA
Katherine A. Adelsberger, Knox College, USA
Gerardo J. Aguirre-Diaz, Univ. Nacional Autonoma de Mexico–Campus Junquilla, Mexico
Jonathan Aitchison, Univ. of Sydney, Australia
Pawel Aleksandrowski, Univ. of Wroclaw, Poland
Joseph L. Allen, Concord Univ., USA
David T. Allison, Univ. of South Alabama, USA
Helge Alsheln, Texas Christian Univ., USA
John R. Anderson, Rice Univ., USA
John R. Anderson, Georgia Perimeter College, USA
Thomas H. Anderson, Univ. of Pittsburgh, USA
Arild Andresen, Univ. of Oslo, Norway
Elizabeth Y. Anthony, Univ. of Texas at El Paso, USA
Anne Argast, Indiana Univ.–Purdue Univ., USA
Emmanuelle Arnaud, Univ. of Guelph, Canada
Eve M. Arnold, Stockholm Univ., Sweden
Gail M. Ashley, Rutgers State Univ., USA
William J. Ausich, Ohio State Univ.–Columbus, USA
Whitney J. Autin, State Univ. of New York–College at Brockport, USA
Valerian Bachatde, Munich Univ., Germany
Jean M. Bahr, Univ. of Wisconsin–Madison, USA
David G. Bailey, Hamilton College, USA
Gordon C. Baird, State Univ. of New York–College at Fredonia, USA
Paul A. Baker, Duke Univ., USA
David L. Barbeau Jr., Univ. of South Carolina, USA
Rafael José Barboza-Gudino, Inst. de Geologia de la Univ. Autonoma de San Luis Potosi, Mexico
Calvin G. Barnes, Texas Tech Univ., USA
Carlo Baroni, Univ. of Pisa, Italy
Andrea M. Barr, Acadia Univ., Canada
John M. Bartley, Univ. of Utah, USA
John W. Bartley, Muskegon Community College, USA
Giorgio Basilici, Univ. Estadual de Campinas, Brazil
Kari N. Bassett, Univ. of Canterbury, New Zealand
David R. Bazard, College of the Redwoods, USA
Rachel J. Beane, Bowdoin College, USA
Richard H. Becker, Univ. of Toledo, USA
Paul Belasky, Olin College, USA
Daniel F. Belknap, Univ. of Maine, USA
Edward Erik Bender, Orange Coast College, USA
John F. Bender, Univ. of North Carolina–Charlotte, USA
Alan I. Benimoff, College of Staten Island, USA
J. Bret Benningen, Hofstra Univ., USA
Cailan X. Bentley, Northern Virginia Community College, USA
Matthias Bernet, Univ. Joseph Fourier, France
Peter J. Berquist, Thomas Nelson Community College, USA
Craig M. Bethke, Univ. of Illinois–Urbana
E. Arthur Bettis III, Univ. of Iowa, USA
Mary Lou Bevier, Univ. of British Columbia, Canada
Prosun Bhattacharya, Royal Inst. of Technology, Stockholm, Sweden
William L. Bilodeau, California Lutheran Univ., USA
Bruce A. Blackerby, California State Univ.–Fresno, USA
Robert Hugh Blodgett, Austin Community College, USA
Brian E. Bodenbender, Hope College, USA
Irene B. Bolland, Winthrop Univ., USA
Peter E. Borella, Saddleback Community College, USA
Stephen K. Boss, Univ. of Arkansas, USA
Joanne Bourgeois, Univ. of Washington, USA
Samuel A. Bowring, MIT, USA
Sandra S. Brake, Indiana State Univ., USA
Henk Brinkhuis, Utrecht Univ., Netherlands
Douglas R. Britton, Long Beach City College, USA
Manfred R. Brix, Ruhr-Univ. Bochum, Germany
Matthew E. Brueseke, San Bernardino Valley College, USA
Donald G. Buchanan, San Bernardino Valley College, USA
Paul Buchheim, Loma Linda Univ., USA
Patrick A. Burkhart, Slippery Rock Univ., USA
Scott F. Burns, Portland State Univ., USA
Thomas A. Bush, Pierce College, Puyallup, USA
Robert F. Butler, Univ. of Portland, USA
Pamela A. Buzas-Stephens, Midwestern State Univ., USA
Ann Bykerk-Kauffman, California State Univ., USA
F. William Cambray, Michigan State Univ., USA
Phyllis A. Camilleri, Austin Peay State Univ., USA
Kathleen A. Campbell, Univ. of Auckland, New Zealand
James L. Carew, College of Charleston, USA
Simon Anthony Carn, Michigan Technological Univ., USA
Sharon D. Carr, Carleton Univ., Canada
Charles W. Carrigan, Olivet Nazarene Univ., USA
Robert J. Carson, Whitman College, USA
Susan M. Cashman, Humboldt State Univ., USA
Devin N. Castendyk, State Univ. of New York–Oneonta, USA
James W. Castle, Clemson Univ., USA
William Cavazza, Univ. of Bologna, Italy
Peter A. Cawood, Univ. of St. Andrews, UK
Ibrahim Cemcen, Univ. of Alabama, USA
Joseph C. Capeka, West Texas A&M Univ., USA
Henry S. Chafetz, Univ. of Houston, USA
Jefferson Castillo Chang, Univ. of Oklahoma, USA
Dominique H.G. Chardon, Toulouse Univ., France
Ju-chin Chen, National Taiwan Univ., Taiwan
Douglas S. Cherkauer, Univ. of Wisconsin–Milwaukee, USA
Craig A. Chesner, Eastern Illinois Univ., USA
Allan Ross Chivas, Univ. of Wollongong, Australia
Gong Soo Chung, Chungnam National Univ., Republic of Korea
Timothy L. Clary, Delta College, USA
Donovan Paul Clark, Louisiana State Univ.–Baton Rouge, USA
Michael D. Clark, Mount Royal College Canada
Peter D. Clift, Univ. of Aberdeen, UK
James F. Coble, Tidewater Community College, USA
Richard R. Cohoon, Arkansas Tech Univ., USA
Raymond A. Coish, Middlebury College, USA
Mark R. Colberg, Southern Utah Univ., USA
Ronald R. Cole, Allegheny College, USA
Patrick M. Colgan, Grand Valley State Univ., USA
James D. Collier, Fort Lewis College, USA
Kent C. Condie, New Mexico Inst. of Mining & Technology, USA
Christopher D. Connors, Washington & Lee Univ., USA
Brian J. Cooper, Sam Houston State Univ., USA
William Sinclair Cordua, Univ. of Wisconsin–River Falls, USA
Ozesa S. Costa Jr., Ohio State Univ., USA
John W. Creasy, Bates College, USA
J. Warner Cribb, Middle Tennessee State Univ., USA
S. Clark Cropper, Volunteer State Community College, USA
Alexander R. Cruden, Monash Univ., Australia
John M. Curchin, Red Rocks Community College, USA
H. Allen Curran, Smith College, USA
Tara M. Curtin, Hobbart & William Smith Colleges, USA
Simon J. Cuthbert, Univ. of the West of Scotland, UK
Jad Alan D’Allura, Southern Oregon Univ., USA
Adalberto da Silva, Univ. Federal Fluminense, Brazil
Gregg R. Davidson, Univ. of Mississippi, USA
Peter B. Davis, Pacific Lutheran Univ., USA
R. Laurence Davis, Univ. of New Haven, USA
Carrie Davis Todd, Univ. of Pittsburgh at Johnstown, USA
James E. Day, Illinois State Univ., USA
Marc A.O. De Batist, Univ. of Gent, Belgium
Frank L. DeCourten, Sierra College, USA
Melanie L. DeVore, Georgia College & State Univ., USA
Richard J. Dieckoe, George Mason Univ., USA
Yildirim Dilek, Miami Univ., Ohio
John H. Dilles, Oregon State Univ., USA
Carlo Doglioni, Univ. La Sapienza, Italy
Joachim Dorsch, St. Louis Community College, USA
Paul K. Doss, Univ. of Southern Indiana, USA
Mary E. Dowse, Western New Mexico Univ., USA
Grenville Draper, Florida International Univ., USA
Norman A. Duke, Univ. of Western Ontario, Canada
Campus Reps: GSA Thanks You!

Haralambos D. Kranis, Univ. of Athens, Greece
Mary J. Kraus, Univ. of Colorado–Boulder, USA
Tim J. Kroeger, Bemidji State Univ., USA
Michael A. Kroh, Bridgewater State College, USA
Thomas E. Lachmar, Utah State Univ., USA
Jade Star Lackey, Pomona College, USA
Terry Dale Lahm, Capital Univ., USA
Jo Laird, Univ. of New Hampshire, USA
Helen M. Lang, West Virginia Univ.–Morgantown, USA
Nicholas P. Lang, Mercyhurst College, USA
Peter B. Larson, Washington State Univ., USA
Norman P. Lasca Jr., Univ. of Wisconsin–Milwaukee, USA
William M. Last, Univ. of Manitoba, Canada
Hee-Kwon Lee, Kangwon National Univ., Republic of Korea
Alison M. Leitch, Memorial Univ. of Newfoundland, Canada
Mehd Shafeea Leman, Univ. Kebangsaan, Malaysia
Karl W. Leonard, Minnesota State Univ.–Moorhead, USA
Jonathan C. Lewis, Indiana Univ. of Pennsylvania, USA
Zhaoxui Li, Univ. of Wisconsin–Parkside, USA
Zheng Xiang Li, Curtin Univ., Australia
Andrew Tien-Shun Lin, National Central Univ., Taiwan
Jennifer Lindline, New Mexico Highlands Univ., USA
Paul K. Link, Idaho State Univ., USA
Alvis I. Lisenbee, South Dakota School of Mines, USA
Teh-Ching Liu, National Taiwan Normal Univ., Taiwan
Cynthia M. Liukits, Appalachian State Univ., USA
James D. Loch, Univ. of Central Missouri, USA
Steven T. LoDuca, Eastern Michigan Univ., USA
Staci L. Loewy, California State Univ.–Bakersfield, USA
Darrell G. Long, Laurentian Univ.–Sudbury, Canada
Allan Ludman, Queens College–City Univ. of New York, USA
Virgil W. Lueth, New Mexico Tech, USA
James H. MacDonald, Florida Gulf Coast Univ., USA
J. Brian Mahoney, Univ. of Wisconsin–Eau Claire, USA
Christopher G. Maples, Oregon Inst. of Technology, USA
David R. Marchant, Boston Univ., USA
Pedro J. Marenco, Bryn Mawr College, USA
Gorki Mariano, Federal Univ. de Pernambuco, Brazil
L. Lynn Marquez, Millersville Univ., USA
Bruce D. Marsh, Johns Hopkins Univ., USA
Philippe L. Masson, Univ. Paris–Sud, France
George F. Maxey, Univ. of North Texas, USA
Susan Todd Maxey, Brookhaven College, USA
Kyle R. Mayborn, Western Illinois Univ., USA
Katherine McCarville, Upper Iowa Univ., USA
Elizabeth A. McClellan, Radford Univ., USA
Thomas E. McKenna, Univ. of Delaware, USA
R. Dietmar Muller, Univ. of Sydney, Australia
Emilio Mutis-Duplat, Univ. of Texas–Permian Basin, USA
Laurence J. Mutti, Juniata College, USA
Maria Mutti, Univ. of Potsdam, Germany
Peter I. Nabelek, Univ. of Missouri–Columbia, USA
Thomas Naeahr, Texas A&M–Corpus Christi, USA
Elizabeth A. Nagy-Shadman, Pasadena City College, USA
H. Richard Naslund, SUNY at Binghamton, USA
Boris A. Natalin, Istanbul Technol. Univ., Turkey
Clive R. Neal, Univ. of Notre Dame, USA
Donald W. Neal, East Carolina Univ., USA
Vincent E. Neal, Massey Univ., New Zealand
Stephen A. Nelson, Tulane Univ., USA
Franz R. Neubauer, Univ. of Salzburg, Austria
Peter A. Nielsen, Keene State College, USA
LaRell Nelson, Stephen F. Austin State Univ., USA
Daria L. Nikitina, West Chester Univ., USA
Jeffrey B. Noblett, Colorado College, USA
Jonathan A. Nourse, California Polytechnic Inst., USA
Irwin D. Novak, Univ. of Southern Maine, USA
Francisco E. Nullo Sr., CONICET-SEGEMAR, Argentina
Lawrence Edward O’Brien, Orange County Community College, USA
Eric A. Oches, Bentley Univ., USA
Yoshihide Ogasawara, Waseda Univ., Japan
Aral I. Okay, Istanbul Technical Univ., Turkey
Koji Okumura, Hiroshima Univ., Japan
Adolph A. Oliver III, Chabot College, USA
Lois K. Ongley, Unity College, USA
Glenn R. Osburn, Washington Univ., USA
Mark Alan Ouimette, Hardin-Simmons Univ., USA
Donald E. Owen, Lamar Univ., USA
Brent Owens, College of William and Mary, USA
J. Michael Palin, Univ. of Otago, New Zealand
Assad I. Panah, Univ. of Pittsburgh, USA
Howard Parish, New Jersey City Coll., USA
Donnie Franklin Parker Jr., Baylor Univ., USA
Simon A.J. Pattison, Brandon Univ., Canada
Peter C. Patton, Wesleyan Univ., USA
Jess L. Pelaez, Queensland Univ. of Technology, USA
Gary L. Peterson, San Diego State Univ., USA
Virginia L. Peterson, Grand Valley State Univ., USA
Kevin T. Pickering, Univ. of London, UK
Scott H. Pike, Willamette Univ., USA
Martin Meschede, Univ. of Greifswald, Germany
Robert Metz, Kean Univ., USA
David L. Meyer, Univ. of Cincinnati, USA
Calvin F. Miller, Vanderbilt Univ., USA
Hugh H. Mills III, Tennessee Tech Univ., USA
James G. Mills Jr., DePauw Univ., USA
Charles E. Mitchell, Univ. of Buffalo, USA
William N. Mode, Univ. of Wisconsin–Oshkosh, USA
David P. Moecher, Univ. of Kentucky, USA
Howard D. Mooers, Univ. of Minnesota–Duluth, USA
Matty Mookerjee, Sonoma State Univ., USA
C. Leah Moore, Univ. of Canterbury, Australia
Carleton B. Moore, Arizona State Univ., USA
Abhijit Mukherjee, Indian Inst. of Technology, India
Peter H. Munn, Univ. of Saskatchewan, USA
Brendan Murphy, Saint Francis Xavier Univ., Canada
Emilio Mutis-Duplat, Univ. of Texas–Permian Basin, USA
Laurence J. Mutti, Juniata College, USA
Maria Mutti, Univ. of Potsdam, Germany
Peter I. Nabelek, Univ. of Missouri–Columbia, USA
Tahmin Naz, Texas A&M–Corpus Christi, USA
Elizabeth A. Nagy-Shadman, Pasadena City College, USA
H. Richard Naslund, SUNY at Binghamton, USA
Boris A. Natalin, Istanbul Technol. Univ., Turkey
Clive R. Neal, Univ. of Notre Dame, USA
Donald W. Neal, East Carolina Univ., USA
Vincent E. Neal, Massey Univ., New Zealand
Stephen A. Nelson, Tulane Univ., USA
Franz R. Neubauer, Univ. of Salzburg, Austria
Peter A. Nielsen, Keene State College, USA
LaRell Nelson, Stephen F. Austin State Univ., USA
Daria L. Nikitina, West Chester Univ., USA
Jeffrey B. Noblett, Colorado College, USA
Jonathan A. Nourse, California Polytechnic Inst., USA
Irwin D. Novak, Univ. of Southern Maine, USA
Francisco E. Nullo Sr., CONICET-SEGEMAR, Argentina
Lawrence Edward O’Brien, Orange County Community College, USA
Eric A. Oches, Bentley Univ., USA
Yoshihide Ogasawara, Waseda Univ., Japan
Aral I. Okay, Istanbul Technicall Univ., Turkey
Koji Okumura, Hiroshima Univ., Japan
Adolph A. Oliver III, Chabot College, USA
Lois K. Ongley, Unity College, USA
Glenn R. Osburn, Washington Univ., USA
Mark Alan Ouimette, Hardin-Simmons Univ., USA
Donald E. Owen, Lamar Univ., USA
Brent Owens, College of William and Mary, USA
J. Michael Palin, Univ. of Otago, New Zealand
Assad I. Panah, Univ. of Pittsburgh, USA
Howard Parish, New Jersey City Coll., USA
Donnie Franklin Parker Jr., Baylor Univ., USA
Simon A.J. Pattison, Brandon Univ., Canada
Peter C. Patton, Wesleyan Univ., USA
Jess L. Pelaez, Queensland Univ. of Technology, USA
Gary L. Peterson, San Diego State Univ., USA
Virginia L. Peterson, Grand Valley State Univ., USA
Kevin T. Pickering, Univ. of London, UK
Scott H. Pike, Willamette Univ., USA
Marcio M. Pimentel, Univ. Federal do Rio Grande do Sul, Brazil
Roy E. Plotnick, Univ. of Illinois–Chicago, USA
Thomas G. Plymate, Missouri State Univ., USA
Gerard D. Pollack, Georgia Perimeter College, USA
Donald B. Potter, Univ. of the South, USA
Wayne Powell, Brooklyn College, USA
Tony R. Prave, Univ. of St. Andrews, UK
Kathryn A. Prejeant, Eastern Kentucky Univ., USA
Jonathan D. Price, Rensselaer Polytechnic Inst., USA
Carol J. Pride, Savannah State Univ., USA
Patrick T. Pringle, Centralia College, USA
Donald R. Prothro, Occidental College, USA
Tracy Michelle Quan, Oklahoma State Univ., USA
Manuel Quiring, Freie Univ. Berlin, Germany
Tapani Rämö, Univ. of Helsinki, Finland
William A. Ranson, Furman Univ., USA
Troy Rusbavy, State Univ. of New York at Stony Brook, USA
Lothar Ratschbacher, Technische Univ. der Freien Universitaet Berlin, Germany
Jin-Han Ree, Korea Univ., Republic of Korea
Joseph F. Reese, Edinboro Univ. of Pennsylvania, USA
Robert S. Regis, Northern Michigan Univ., USA
Robin W. Renaut, Univ. of Saskatchewan, Canada
Gregory J. Retallack, Univ. of Oregon, USA
James H. Reynolds, Brevard College, USA
Scott Rice-Snow, Ball State Univ., USA
Mary M. Riestenberg, College Mount St. Joseph, USA
Uwe Ring, Canterbury Univ., New Zealand
John R. Ritter, Wittenberg Univ., USA
John D. Rockaway, Northern Kentucky Univ., USA
David M. Rohr, Sull Ross State Univ., USA
Thomas J. Rossbach, Elizabeth City State Univ., USA
Benjamin Jay Rostron, Univ. of Alberta, Canada
Denis W. Roy, Univ. du Québec–Chicoutimi, Canada
Lawrence P. Rudd, Nevada State College, USA
Joaquin Ruiz, Univ. of Arizona, USA
Tracy A. Rushmer, Maquarie Univ., Australia
Derek Rust, Univ. of Portsmouth, UK
Jeffrey G. Ryan, Univ. of South Florida, USA
Peter M. Sadler, Univ. of California–Riverside, USA
Bernhard Saini-Eidukat, North Dakota State Univ., USA
Peter B. Sak, Dickinson College, USA
Jason B. Salecby, California Inst. of Technology, USA
Hiroyoshi Sano, Kyushu Univ., Japan
Benyamin Sapiei, Inst. Teknologi Bandung, Indonesia
Ira D. Sasowski, Univ. of Akron, USA
Dorothy A. Satterfield, Univ. of Derby, UK
Joseph I. Satterfield, Angelo State Univ., USA
Steven H. Schimmrich, State Univ. of New York–Ulster County Community College, USA
Melvin E. Schmidt, McNeese State Univ., USA
James G. Schmitt, Montana State Univ., USA
Richard E. Schofield, McMurry Univ., USA
Ronald C. Schott, Fort Hays State Univ., USA
John C. Schumacher, Univ. of Bristol, UK
Brent A. Schwimmer, Rider Univ., USA
David B. Scott, Dalhouse Univ., Canada
Bruce W. Selleck, Colgate Univ., USA
Steven C. Semken, Arizona State Univ., USA
CALL FOR APPLICATIONS

2012–2013 GSA-USGS Congressional Science Fellowship

Bring your science and technology expertise and passion for shaping the future to Capitol Hill to work directly with national leaders at the interface between geoscience and public policy.

Deadline: 1 Feb. 2012

The GSA-USGS Congressional Science Fellowship provides a rare opportunity for a unique individual to work in a House or Senate office for one year. Prospective candidates are GSA members with a broad geoscience background and excellent written and oral communication skills. The fellowship is open only to U.S. citizens or permanent U.S. residents, with a minimum requirement of a master’s degree with at least five years professional experience or a Ph.D. at the time of appointment.

Questions? Contact Ginger Williams, +1-303-357-1040, gwilliams@geosociety.org.

www.geosociety.org/csf/

—

Campus Reps: GSA Thanks You!
It’s Time!

Renew your Membership for 2012 plus

• Journal Subscriptions
• Division Memberships
• Additional Sections Affiliations
• Support the GSA Foundation

Indulge your Professional Interests

Join GSA Divisions

Archaeological Geology
Coal Geology
Environmental and Engineering Geology
Geobiology & Geomicrobiology
Geoinformatics
Geology and Health
Geology and Society
Geophysics
Geoscience Education

History and Philosophy of Geology
Hydrogeology
Limnogeology
Mineralogy, Geochemistry, Petrology, and Volcanology
Planetary Geology
Quaternary Geology & Geomorphology
Sedimentary Geology
Structural Geology & Tectonics

Where geology and people come together
The GSA Membership Advantage

- Premier Journals
 Geology, GSA Bulletin, Lithosphere, Geosphere
- Scientific Exchange—GSA meetings and 17 Geoscience Divisions
- Publish and Present Research
- Public Policy Updates
- Member-Only Discounts
 GSA Meetings, Journals, Online Bookstore

Student, Recent Grads, and K–12 Teacher Extras

- FREE Online Access to Journals
 (more than US$190 annual value)
- Research Funding
 (geographic restrictions may apply)
- Mentor Programs and Employment Contacts

www.geosociety.org/members/

FAST EASY SECURE

P.O. Box 9140, Boulder, CO 80301-9140, USA • Phone: +1.303.357.1000. option 3 • Toll-free: +1.888.443.4472
Fax: +1.303.357.1071 • Email: gsaservice@geosociety.org

Save 15%
off Membership Dues through
15 December 2011.
Preliminary Announcement & Call for Papers

SOUTH-CENTRAL
46th Annual Meeting of the South-Central Section, GSA
Alpine, Texas, USA
7–9 March 2012
www.geosociety.org/Sections/sc/2012mtg/

CALL FOR PAPERS
Abstract deadline: 6 Dec. 2011
Please submit your abstract online at www.geosociety.org/Sections/sc/2012mtg/. An abstract submission fee of US$10 for students and US$15 for all others will be charged. If you cannot submit an abstract online, please contact Linda Battan, +1-303-357-1018, lbattan@geosociety.org. For any other questions, please contact the Technical Program Chair, Jim Whitford-Stark at jlwstark@sulross.edu.

Symposium
1. Big Bend National Park and Vicinity: A Decade of Research. Don Corrick, Big Bend National Park; Dee Ann Cooper, Texas Natural Science Center, The Univ. of Texas at Austin; Roger Cooper, Lamar Univ.

Theme Sessions
1. Tectonic History of the Trans-Pecos Region.
3. Long-Term Biogeochemical Responses to Global Change. John Zak, Texas Tech University.
4. The Permian of the Southwest.
5. Aquifers of West Texas. James Ward, Angelo State University.
6. Geochronological Investigations in the Big Bend Region, Southwestern Texas. Andy Cloud, Center for Big Bend Studies, Sul Ross State University.
7. Issues in Earth Science Education.

FIELD TRIPS
Please contact Field Trip Chair John White at john.white@eku.edu if you have questions.
1. Geology of Big Bend National Park: A Decade of Research. John White, Eastern Kentucky University.
3. Permian of the Southwest.
4. Aquifers of West Texas.

SHORT COURSE
Techniques in Field Hydrogeology and Hydrology. Joe Yelderman, Baylor University; Kevin Urbanczyk, Sul Ross State University.

REGISTRATION
Early registration deadline: 6 Feb. 2012
Registration opens in December. For further information or if you need special accommodations, please contact the general chair, Kevin Urbanczyk, at kevinu@sulross.edu.

From the NASA Earth Observatory website: “Alternately known as a geologist’s paradise and a geologist’s nightmare, Big Bend National Park in southwestern Texas offers a multitude of rock formations. Sparse vegetation makes finding and observing the rocks easy, but they document a complicated geologic history extending back 500 million years.” The Enhanced Thematic Mapper Plus on NASA’s Landsat 7 satellite captured this natural-color image of Big Bend National Park on 10 May 2002; http://earthobservatory.nasa.gov/IOTD/view.php?id=44670.
CORDILLERAN

108th Annual Meeting of the Cordilleran Section, GSA
Querétaro, México
29–31 March 2012

www.geosociety.org/Sections/cord/2012mtg/

LOCATION
The Center of Geoscience and the Institute of Geology of the National Autonomous Univ. of Mexico (Universidad Nacional Autónoma de México; UNAM) are hosting the 108th meeting of the GSA Cordilleran Section in Querétaro, Mexico, at Hotel Misión Juriquilla. Querétaro is a modern industrial city built around a beautiful colonial center. It is located in the geographic center of country, ~140 miles northwest of Mexico City.

CALL FOR PAPERS
Abstract deadline: 12 Jan. 2012
Please submit your abstract online at www.geosociety.org/Sections/cord/2012mtg/. An abstract submission fee of US$10 for students and US$15 for all others will be charged. If you cannot submit the abstract online, please contact Linda Battan, +1-303-357-1018, lbattan@geosociety.org.

Symposium
51. Amalgamation and Breakup of Pangea in the Americas. Cosponsored by IGCP 597 (Origin and Evolution of Pangea) and IGCP 574 (Bending and Bent Orogens, Continental Ribbons). Brendan Murphy, St. Francis Xavier Univ., bmurphy@stfx.ca; Jarda Dostal, Saint Mary’s Univ., jarda.Dostal@StMarys.ca; Damian Nance, Univ. of Ohio, nance@ohio.edu.

Theme Sessions
T1. Silicic Volcanism. Cathy Busby, Univ. of California, cathy@crustal.ucsb.edu; Graham Andrews, Univ. of California, gdma1977@gmail.com.
T2. Ore Deposits and Ore Genesis in the American Cordillera. Antoni Camprubi, UNAM, camprubitaga@gmail.com.
T3. Convergent Margin of Western Pangea: Triassic-Jurassic Magmatism, Sedimentation, and Tectonics from Colombia to Oregon. Timothy Lawton, New Mexico State Univ., tlawton@nmsu.edu; Rafael Barboza-Gudiño, Univ. Autónoma de San Luis Potosí, rbarboza@uaslp.mx; Roberto Molina-Garza, UNAM, rmolina@geociencias.unam.mx.
T4. Flat-Slab Subduction from Past to Present. Vlad Manea, UNAM, vlad@geociencias.unam.mx; Marina Manea, UNAM, marina@geociencias.unam.mx.
T5. Mechanisms of Arc Magma Generation along the Cordillera. Laura Mori, UNAM, lmori@geologia.unam.mx; Peter Schaaf, UNAM, pschaaf@geofisica.unam.mx; Arturo Gómez Tuena, UNAM, tuena@geociencias.unam.mx.
T6. Terrane Accretion, Flat Slab Subduction, and Convergence Rate Variations: What Caused the Cretaceous-Paleogene Shortening across the Mexican Cordillera? Michelangelo Martini, UNAM, mmartini@geologia.unam.mx; Elisa Fitz Diaz, elisaf@geologia.unam.mx; Timothy Lawton, New Mexico State Univ., tlawton@nmsu.edu.
T7. Structural Style, Timing, and Stratigraphy of the Laramide Orogeny in Mexico. Mariano Cerca, UNAM, mcerca@geociencias.unam.mx; Gabriel Chavez-Cabello, Universidad de Nuevo León, gabchave@hotmail.com; Martín Valencia, UNAM, valencia@geologia.unam.mx.
T8. Lithosphere Stretching and Magmatism Leading to the Gulf of California. Luca Ferrari, UNAM, luca@geociencias.unam.mx; Arturo Martin Barajas, CICESE, amartin@cicese.mx; Joann Stock, California Institute of Technology, jstock@gps.caltech.edu.
T9. What Do Fossil Ages and Distributions Tell Us about the History of the Ancient Gulf of California? Judy Terry Smith, redcloud1@earthlink.net, Smithsonian Institution; Ana Luisa Carreño, UNAM, anacar@servidor.unam.mx; Javier Helines, CICESE, jhelines@cicese.mx.
T10. The Caribbean Plate and its Geologic Connections with North and South America. Luigi Solari, UNAM,
T11. **Developments in Geophysical Investigations of Volcano Hydrothermal Systems: Exploration and Hazards.** Jonathan M.G. Glen, USGS, jglen@usgs.gov; Shaul Hurwitz, USGS, shaulh@usgs.gov; Vyacheslav M. Zobin, Universidad de Colima, vzobin@ucol.mx; Robert A. Sohn, Woods Hole Oceanographic Institution, rsohn@WHOI.edu.

T12. **Limnogeology Studies and Paleoenvironmental Records from Ancient and Modern Lakes.** Beatriz Ortega, UNAM, bortega@geofisica.unam.mx; Margarita Caballero, UNAM, maga@geofisica.unam.mx; Socorro Lozano, UNAM, mslozano@servidor.unam.mx.

T13. **Heterogeneous Geologic Formations: Modeling Spatial Variability.** Eric Morales Casique, UNAM, ericmc@geologia.unam.mx; Martín Díaz Viera, Instituto Mexicano del Petróleo, mdiazv@imp.mx.

T14. **Ground Deformation Related to Anthropogenic Activities: Achievements in the Development of Geoscience Information System for Improved Management of Natural Resources.** Dora Carreon-Freyre, UNAM, freyre@geociencias.unam.mx; Mariano Cerca, UNAM, mcerca@geociencias.unam.mx; Devin Galloway, USGS, dlgallow@usgs.gov; Penelope Lopez-Quiroz, Centro de Investigación en Geografía y Geomática, penelope@centrogeo.org.mx.

T15. **Pushing the Envelope: Recent Advances in Teaching Geoscience with Technology.** Ralph Dawes, Wenatchee Valley College, RDawes@wvc.edu.

T16. **Undergraduate Research Posters.** Cosponsored by Council on Undergraduate Research (CUR). Kathleen D. Surpless, Trinity Univ., ksurples@trinity.edu.

FIELD TRIPS
To submit additional field trip proposals, contact Jorge Aranda, jjag@geociencias.unam.mx.

1. **Amalgamation and Breakup of Pangea: The Type Example of the Supercontinent Cycle—Acatlán Complex, Southern Mexico: The Geological Record of an Orogen on the Western Periphery of Pangea** (4 days). Duncan Keppie, UNAM, duncan@unam.mx, Brendan Murphy, Gonzalo Galaz, Moritz Kirch, and Maria Helbig.

2. **The Late Cretaceous Mexican Fold-and-Thrust Belt and Its Possible Relation with the Accretion of the Guerrero Terrane** (3 days). Michelangelo Martini, mmartini@geologia.unam.mx, Elisa Fitz, and Timothy Lawton.

3. **Environmental Geochemistry of the Pozos Mining District, Guanajuato, East-Central Mexico** (1 day). Alejandro Carrillo, ambiente@geociencias.unam.mx, Juventino Martínez, and Gilles Levresse.

4. **Sierra de Catorce: Remnants of the Ancient Pacific Margin of Western Pangea in Central Mexico** (2–3 days). Rafael Barboza, rbarboza@uaslp.mx, Roberto Molina, and Tim Lawton.

5. **Geology of the Paricutin Volcano and of Los Azufres Geothermal Field, Michoacán** (3 days). Ignacio Torres Alvarado, ita@cie.unam.mx, Victor Hugo Garduño, Pedro Corona, and Eduardo González Partida.

6. **Ground Deformation Related to Anthropogenic Activities in Urbanized Areas of the Mexico Basin** (2 days). Mariano Cerca, mcerca@geociencias.unam.mx, and Dora Carreón.

7. **The Mid-Tertiary Volcanic Sequence Exposed at the Guanajuato Mining District and its Relation with Silver-Gold Mineralization.** José Jorge Aranda-Gómez, jjag@geociencias.unam.mx, Pablo Dávila-Harris, and Luis Vassallo.

8. **Recent Volcanism in the Eastern Trans-Mexican Volcanic Belt.** Gerardo Carrasco, gerardoc@geociencias.unam.mx, Pablo Dávila-Harris, Michael Ort, Nancy Riggs, and Lee Siebert.

REGISTRATION
Early registration deadline: 27 Feb. 2012
Cancellation deadline: 5 Mar. 2012
Online registration begins in January 2012. For further information, or if you have special requirements, please contact the local committee chair, Luca Ferrari, luca@geociencias.unam.mx.

ACCOMMODATIONS
A block of rooms has been reserved at Hotel Misión Juriquilla at the following rates: single/double w/breakfast: US$127/US$132 (incl. tax) per night; single/double all inclusive (breakfast, lunch & dinner): US$160/US$224 (incl. tax) per night. Reservations: 01-800-900-3800 or reserve@hotelesmision.com.mx; please mention the GSA Cordilleran Section. Hotel website: www.hotelesmision.com/mexico/queretaro/queretaro/hotels/Mision-Juriquilla/description.aspx.
Sidestep Tsunamis of CVs!

Avoid drowning under waves of unsuitable resumes and opportunistic applications!

ZOOM IN ON TALENT IDEALLY SUITED TO YOUR POSITION!

Find the most qualified, talented, problem-solving individuals. AGU members’ expertise spans an immense range of scientific disciplines and skill sets. No wonder employers around the world make the AGU Career Center their first choice for advertising job opportunities to reach the best candidates.

- **Streamline your hiring process** – Access the most talented Earth and space science professionals in your field.
- **Resume Search** – Our growing resume database proves the AGU Career Center is fast becoming THE destination for Earth and space science professionals. Employers get access to that database at no additional charge just by posting a job.
- **Easy online job management** – Enter job descriptions, check the status of postings, renew or discontinue postings, and make payments online.
- **Job activity tracking** – Your online account will include reports that show you the number of individuals that have viewed your job, applied online, and even how many times your job was sent out in a “job agent” or “e-mailed to a friend.” You’ll see at a glance how effective your ad is.
- **Auto notification** – No more time wasted visiting the site every day to find new candidates. Set the criteria for your ideal job candidate and we will email you when new resumes are a match.
- **Company awareness** – A valuable venue for promoting your organization, the AGU Career Center allows you to include information about your organization, your logo, a Google Map to your location and a link to your web site with each job posting.

Target the talent at careers.agu.org
Preliminary Announcement & Call for Papers

SOUTHEASTERN
61st Annual Meeting of the Southeastern Section, GSA
Asheville, North Carolina, USA
1–2 April 2012
www.geosociety.org/Sections/se/2012mtg/

CALL FOR PAPERS
Submit online: www.geosociety.org/Sections/se/2012mtg/
Abstract submission fee: US$10 for students; US$15 for all others. Contact Nancy Wright, +1-303-357-1061, nwright@geosociety.org, if you cannot submit your abstract via the online system.

Symposium
1. Transcurrent Motion in the Southern Appalachians: Comparing Kinematics and Timing across the Orogen. Cheryl Waters-Tormey, Western Carolina Univ., cherylwt@wcu.edu; Jim Hibbard, North Carolina State Univ., jphibbard@ncsu.edu.
2. Coastal Response to Sea Level and Climate Changes. Cosponsored by Western Carolina University Program for the Study of Developed Shorelines; Eastern Section, SEPM. Katie McDowell, Western Carolina Univ., kmcdowell@wcu.edu; David Mallinson, East Carolina Univ., mallinsond@ecu.edu.
3. Practical Applications of Engineering Geology. Cosponsored by AEG Carolinas Section. Paul Weaver, Chair, AEG-Carolinas, paul.weaver@summit-engineer.com; Brad Worley, North Carolina Department of Transportation, bdworley@ncdot.gov.

Theme Sessions
1. Terranes of the Southern Appalachian Blue Ridge and Piedmont: Insights into Their Tectonic Heritage and Incorporation into the Orogen from Recent Geochronologic, Isotopic, Provenance, and Field Studies. Arthur J. Merschat, USGS, amerschat@usgs.gov; Brendan R. Bream, ExxonMobil Exploration Co., bbream@msn.com; Richard Tollo, George Washington Univ., rollo@gwu.edu.
2. Ancient and Modern Eolian Systems of Eastern North America. Cosponsored by Eastern Section, SEPM. Chris Sweeney, USGS, csweeney@usgs.gov; Rich Whittecar, Old Dominion Univ., rwhittec@odu.edu.
3. Sedimentation and Stratigraphy of Fine-Grained Strata: Insights from Modern and Ancient Marine Systems. Cosponsored by Eastern Section, SEPM. J.P. Walsh, East Carolina Univ., walshj@ecu.edu; Don Neal, East Carolina Univ., neald@ecu.edu.
4. Hydrological Processes and Problems in the Southern Appalachians. Mark Lord, Western Carolina Univ., mlord@wcu.edu; Dave Kinner, dkinner@wcu.edu; Jerry Miller, Western Carolina Univ., jmill@wcu.edu.
6. Coastal Hydrogeology. Samuel Mutiti, Georgia College and State Univ., samuel.mutiti@gcsu.edu; Alex Manda, East Carolina Univ., mandaa@ecu.edu.

Shaping Continents, Shaping Landscapes, Shaping Policy

LOCATION
The Dept. of Geosciences and Natural Resources at Western Carolina University is pleased to host the 61st Annual Meeting of GSA’s Southeastern Section at the Renaissance Asheville Hotel, located in historic downtown Asheville, North Carolina, USA. Asheville offers easy access to the world renowned geology of the Blue Ridge, Piedmont, Valley and Ridge, and Cumberland Plateau, with geologic venues ranging from ancient orogenic belts and exotic mineral districts to active landslides, karst landscapes, and unique fossil sites.

8. **Geologic Maps, Digital Geologic Maps and Derivatives (Poster Session).** Michael W. Higgins, The Geologic Mapping Institute, mhiggins@mindspring.com; Ralph F. Crawford, The Geologic Mapping Institute, crawford@sprintmail.com.

9. **Undergraduate Research (Poster Session).** Lee Phillips, Univ. of North Carolina, p.l.phillips@uncp.edu.

FIELD TRIPS

1. **Industrial Minerals of the Spruce Pine Mineral District.** Cosponsored by SME-Carolinas. Alex Glover, Active Minerals International, a.glover@activeminerals.com; Bob Ganis, consultant, bohgannis@mac.com.

2. **Central and Eastern Blue Ridge Tectonics.** Arthur Merschat, USGS, amerschat@usgs.gov; Robert D. Hatcher, Jr., Univ. of Tennessee, bobmap@utk.edu.

3. **Caves and Karst of the Cumberland Plateau in Southeast Kentucky.** Cosponsored by Eastern Section, SEPM. Lee J. Florea, Ball State Univ., mr_chaos@hotmail.com.

WORKSHOPS

1. **Creating Your Own Geological Maps, Models, and Geoscience Learning Resources Using Google Earth.** Declan De Paor, Old Dominion Univ., DDePaor@odu.edu; Steve Whitmeyer, James Madison Univ., whitmesj@jmu.edu.

2. **Facilitating Classroom Innovation in the Geosciences: The TUES and Other NSF Educational Funding Programs, and Strategies for Successful TUES Proposals.** Jeff Ryan, Univ. of South Florida, ryan@mail.usf.edu; Jill Singer, Buffalo State College, singerjk@buffalostate.edu.

3. **Field Safety Leadership.** Amy Ruf, ExxonMobil Upstream Research Co., amy.s.ruf@exxonmobil.com; Stephen Oliveri, ExxonMobil Corp., stephen.r.oliveri@exxonmobil.com; Kevin Bohacs, ExxonMobil Upstream Research Co., kevin.m.bohacs@exxonmobil.com.

ACCOMMODATIONS

A block of rooms has been reserved for meeting attendees at the Renaissance Asheville Hotel, 31 Woodfin Street, Asheville, NC, 28801, USA, + 1-800-266-9432. Room rate: US$119 per night, plus tax.

LOCAL COMMITTEE

General Co-Chairs: Blair Tormey, btormey@wcu.edu; Cheryl Waters-Tormey, cherylwtr@wcu.edu

Tech Program Chair: Kevin Stewart, kgstewar@email.unc.edu

Field Trip Chair: Chuck Trupe, chtrupe@georgiasouthernc.edu

Short Courses & Workshops Chair: Eric Horsman, horsman@ccu.edu

Student Volunteers Coordinator: Ben Tanner, btanner@wcu.edu

Exhibits Chair: Bart Cattanach, bart.cattanach@ncdenr.gov

Sponsorship & Events Chair: Jeff Wilcox, jwilcox@unca.edu

AV Chair: Dan Jones, dsjones@wcu.edu
Deformation, Fluid Flow, and Mass Transfer in the Forearc of Convergent Margins

25–31 March 2012
Il Ciocco, Castelvecchio Pascoli, Lucca, Italy

CONVENERS

Donald Fisher, Dept. of Geosciences, Penn State University, University Park, Pennsylvania, USA, dfmf6@psu.edu
César Ranero, Barcelona Center for Subsurface Imaging, Barcelona, Spain, cranero@cmima.csic.es
Paola Vannucchi, Dipt. di Scienze della Terra, Università degli Studi di Firenze, Firenze, Italia, paola.vannucchi@unifi.it

ORGANIZING COMMITTEE

Eli Silver, Univ. of California at Santa Cruz; Demian Saffer, Penn State Univ.; Greg Moore, Univ. of Hawaii; Kelin Wang, Univ. of Victoria; Onno Onken, GFZ Potsdam; Timothy Dixon, Univ. of Miami; Carlo Doglioni, Univ. di Roma “La Sapienza”; Claudio Faccenna, Univ. di Roma 3; Jean-Yves Collot, Geozur Nice; Francesca Remitti, Univ. di Modena e Reggio Emilia; Giancarlo Molli, Univ. di Pisa; Roland von Huene, Univ. of California at Davis; Serge Lallemand, Geosciences Montpellier; Sean Willett, ETH Zurich.

Cosponsored by the European Geosciences Union, the Italian Geological Society, the Spanish Ministry of Science and Innovation, and the U.S. National Science Foundation.

Description and Objectives

This Penrose Conference will explore recent developments related to deformation, fluid flow, and mass transfer in the forearc of convergent plate boundaries and their potential relationships to earthquake phenomena and seismogenesis. Numerous recent observations are potentially of great consequence to forearc behavior: (1) evidence for hydration of the oceanic mantle prior to subduction and its dehydration during subduction; (2) recognition of the oceanic crust as a zone of high permeability in the incoming plate; (3) evidence for complex subduction fault behavior, including slow slip within and adjacent to the seismogenic zone; (4) observations by seafloor observatories of tectonically induced transient fluid flow events; (5) observations of complex structure for the forearc, including out-of-sequence faults and a wide array of fault types from extension to shortening; (6) extensive records of slope basin seismic stratigraphy and structure; (7) high-resolution multi-beam images of a significant number of margins that span the full range of convergent margin behavior; (8) discovery of pseudotachylyte (paleo-earthquakes) in accreted sediments; (9) records of coseismic and interseismic deformation from geodetic, especially GPS, measurements; and finally (10) 3-D seismic surveys of both an accretionary and an erosive margin. The recent Great Tohoku Earthquake of 11 March 2011 has thrown into doubt the paradigm that the plate boundaries of erosive convergent margins are too segmented to allow for great earthquakes. This conference will provide an opportunity for researchers to address these and other recent developments in a format that allows for discussion, integration of ideas, and development of collaborations and future directions.

The meeting is an opportunity for integration of onshore and marine observations, experiments on mechanics and fluid flow, and results of geodynamic modeling. Discussions will consider a range of time scales from the short-term secular variations of the seismic cycle to the long-term evolution of structure and topography. The topics that will be emphasized as part of the program include:

- Material balances—the processes and rates of accretion and erosion and their influence on seismogenesis;
- Interactions between the subducting and overriding plates, including continental slope and forearc basins;
- Wedge dynamics and links between seismic and geologic time scales;
- Fluid flow in the forearc and tectonics—evidence from direct observations and inferences from rock microstructures and geochemistry; and
- The timescales of the earthquake cycle—Is the magnitude and frequency of earthquakes influenced by forearc geology?

Preliminary Agenda

This five-day meeting will begin in Bologna, Italy, on 26 March 2012, with a two-day field trip that crosses the Ligurian forearc. Day one will involve observations of the External Ligurides; the second day will focus on a mélangé interpreted as part of an erosive subduction channel. The field trip will end at Il Ciocco, a conference venue situated 500 m above sea level, 70 km north of Pisa airport. A short, half day field trip will be organized in the nearby Apuan Alps to visit the metamorphic rocks deformed during continental subduction of the Adria plate. Transportation to Pisa will be provided at the conclusion of the meeting.

Attendees and Estimated Costs

The registration fee will cover hotel lodging for six nights (double occupancy), all meals for five days, handouts, and transportation for the field trips to Il Ciocco. Airfare is not included; participants must make their own travel arrangements. Registration fees have not been finalized; please check www.geosociety.org/penrose/.
Applications and Registration
Application deadline: 30 Nov. 2011
Registration deadline: 30 Jan. 2011

Participants will have to commit to attending the full five days of the conference. To apply, please contact the conveners at dmf6@psu.edu with a letter of intent that includes a brief statement of interests, the relevance of your recent work to the themes of the conference, the subject of your proposed presentation, and contact information. Interested graduate students and early career faculty are strongly encouraged to apply. Once you have been selected to participate, you will be sent registration information.

Check Out the New Titles in These Two Popular Series

ROADSIDE GEOLOGY OF MISSOURI
Charles G. Spencer
Celebrate the bicentennial of the New Madrid earthquakes with a new book on Missouri’s geology.

- 284 pages • 6x9 • paper, $20.00
- 180 color photos • 80 color illustrations

IN YELLOWSTONE COUNTRY
Marc S. Hendrix
Discover the wonders of America’s first national park with this new guide to its geologic wonders.

- 312 pages • 6x9 • paper, $24.00
- 115 color photos • 66 color illustrations
Supporting the GSA Foundation by
Leaving a Lasting Legacy

The GSA Foundation has been the beneficiary of several “Planned Giving Gifts” since its inception. In just the past eleven years, the Foundation has received more than US$3 million in estate and bequest gifts from GSA members and friends. The following is a list of those thoughtful GSA members:

- **Horace R. Blank**, GSAF Supporter
- **F. Craig Brunstein**, GSA Member 1989–2001
- **Nora I. Colburn Estate**, GSA Member 1989–2001
- **George H. Davis**, GSA Member 1953–2004
- **Steve J. Drussell**, GSA Member 1984–2008
- **Harry D. Goode**, GSA Member 1953–2000
- **Connelly E. Hannum**, GSA Member 1955–2009
- **Henry G. Healy**, GSA Member 1956–2010
- **Fred T. Holden**, GSA Member 1952–2007
- **Francis A. Kohout**, GSA Member 1962–1985
- **Richard H. Mahard**, GSAF Supporter
- **John & Carolyn Mann**, GSA Member 1948–1998
- **Margaret O. Oros**, GSA Member 1955–2008
- **Mary C. Rabbitt**, GSA Member 1985–2002
- **Neilson Rudd Estate**, GSA Member 1957–2001
- **Stewart R. Wallace Estate**, GSAF Supporter
- **Alexander A. Wanek**, GSA Member 1953–2000

There are many ways you can provide a meaningful and special gift to the GSA Foundation in your estate plans. That special gift may be a charitable bequest, a gift of life insurance, or even retirement plan assets. Your financial planner can help you tailor and finalize a plan that will help meet your own personal situation.

The GSA Foundation has a free [Charitable Gift Planning Guidelines] brochure—just call the Foundation office at +1-303-357-1054 or e-mail Donna Russell at drussell@geosociety.org and we’ll be happy to send a copy to you.

Most memorable early geologic experience:

I’ll never forget eating 49 pancakes and still losing the pancake-eating contest to Hugh Wingerter on the last day of Northwestern’s 1949 Lake Superior field trip.

—Henry James Dorman
Publishing with GSA
An Excellent Choice!

Whether you and your colleagues have a group of topical papers that you dream of seeing in a GSA book, or a pithy yet mind-blowing manuscript looking for a journal, your latest research will find a good home at GSA.

GSA SPECIAL PAPERS and MEMOIRS are peer-reviewed, are published quickly after acceptance, and have a worldwide distribution in print and online. Submit your proposal to science editors Kent Condie (New Mexico Institute of Mining and Technology) or Ed Harvey (University of Nebraska–Lincoln) via e-mail to books@geosociety.org. Details: www.geosociety.org/pubs/bookguid7.htm.

GSA’s Top-Rated Journals publish scientific papers on all aspects of earth science, with science editors at the forefront of their fields overseeing a rigorous peer-review process for all manuscripts. Pre-issue publication online gets your accepted paper into circulation quickly.

GSA BULLETIN—Published since 1890 and still going strong.
- 2010 Impact Factor: 3.637
- Five-Year Impact Factor: 4.327
- #10 ranked “geosciences, multidisciplinary” journal by ISI
- SUBMIT ONLINE: http://www.editorialmanager.com/gsabulletin/
- FREE SAMPLE ISSUE: http://bulletin.geoscienceworld.org/

GEOLOGY—Measure your success with a paper accepted into this highly regarded journal.
- 2010 Impact Factor: 4.026
- Five-Year Impact Factor: 4.773
- #1 ranked “geology” journal by ISI
- SUBMIT ONLINE: http://www.editorialmanager.com/geology/
- FREE SAMPLE ISSUE: http://geology.geoscienceworld.org/

GEOSPHERE—Lets you branch out unfettered with free color and a chance to bring animations and interactivity to your papers.
- 2010 Impact Factor: 2.000
- Five-Year Impact Factor: 2.278
- SUBMIT ONLINE: http://www.editorialmanager.com/geosphere/
- FREE SAMPLE ISSUE: http://geosphere.geoscienceworld.org/

LITHOSPHERE—A new kid on the block, but making its mark with popular papers on processes that affect the crust, upper mantle, landscapes, and sedimentary systems at all spatial and temporal scales.
- Impact Factor: 1.781
- Five-Year Impact Factor: 1.781
- #11 ranked “geology” journal by ISI
- SUBMIT ONLINE: http://www.editorialmanager.com/lithosphere/
- FREE SAMPLE ISSUE: http://lithosphere.geoscienceworld.org/

www.gsapubs.org
SOCIAL MEDIA

9–12 October • Minneapolis, Minnesota, USA

Get GSA’s Free Mobile Meeting App!

Download this free app to your smart phone and have everything you need to know about the meeting (updated in real time) at your fingertips.

- **View the entire technical program**—Locate the talk you wish to hear, add it to your calendar, and pinpoint the location on a map;
- See who is exhibiting and find them on the floor plan;
- Select events to attend and add them to your phone’s calendar;
- Receive important alerts and reminders;
- Much, much more!

www.geosociety.org/mobilemeeting/

More Ways to Connect or Follow GSA Via Web 2.0

www.geosociety.org/meetings/2011/fusion.htm

Twitter: Follow GSA @geosociety and #GSAMinn

Blog Roll: Follow various blogs that are posting information about the meeting.

GSA Meeting Bulletin Board: Find anything from rideshares to roommates for the meeting, as well as activity planning and science discussions. Go to the main fusion page to find out how to log in.

Local Geologists’ Guide to Minneapolis

Written by geologists for geologists—use this guide to learn more about the hot spots in Minneapolis, including arts & culture, food & drink, shopping, nightlife, and parks & recreation, all within walking distance of the convention center.

GSA Lunchtime Lecture Series

Minneapolis Convention Center, Room 101DE

The GSA Lunchtime Lecture series offers four one-hour presentations (one for each day of the meeting) by high-profile speakers on broad topics relevant to geoscience and society. Bring your lunch and prepare to be challenged and inspired!

Lunchtime Lecture 4

Harvey Thorleifson: The Role of Geoscience in our Society

Wed., 12 Oct., 12:15–1:15 p.m.

Harvey Thorleifson, this year’s annual meeting chair, is State Geologist of Minnesota; Director, Minnesota Geological Survey; Professor, Dept. of Earth Sciences, University of Minnesota; President Elect, the Association of American State Geologists; and former president of both the Geological Association of Canada and the Canadian Federation of Earth Sciences. He holds a Ph.D. from the University of Colorado.

Lecture synopsis: This year’s meeting theme captures the breadth and importance of what we as geologists do. We grasp the entire scope, in space and time, of our planet and its evolution. We explain earth materials, processes, and history; we outline the history of life; and we provide for human needs with respect to water, energy, materials, and security. The role we play as scientists, educators, consultants, and industry leaders is of escalating importance for human well-being and biodiversity maintenance worldwide. We therefore have a duty to optimize our efficiency and effectiveness, to maximize the benefits we bring to society.

Walker Sculpture Garden; photo used with permission from Meet Minneapolis.
The Department of Chemical and Physical Sciences at the University of Toronto Mississauga is seeking applications for a tenure-track position at the Assistant Professor level from scholars with research interests in Geochemistry, Geophysics, Sedimentology or related fields. The successful applicant will complement an Earth Sciences research cluster at UTM specializing in paleoclimatology, climate-tectonic interactions, and petrology. Candidates for this position should have received their Ph.D. by the starting date, and should demonstrate potential for excellence in teaching and research. The successful applicant will be expected to develop and maintain an active, externally funded program of research and to contribute to the education and training of undergraduates at UTM and graduate students in the Department of Geology, University of Toronto. The position will commence July 1, 2012 at a salary commensurate with qualification and experience.

We encourage you to submit your application online by visiting us at www.jobs.utoronto.ca/faculty.htm, and to refer to job number 1100767. Please ensure that you include a current CV, statement of research and teaching interests, materials relevant to teaching experience, and copies of representative publications. Individuals lacking computer access may submit application materials to Chair of Earth Sciences Search Committee, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6. Three letters of recommendation should also be sent under separate cover. Materials must be received by November 1, 2011.

For more information about the Department of Chemical and Physical Sciences at the University of Toronto Mississauga, please visit our home page at www.utm.utoronto.ca/cps.

The Geosciences Dept. at Williams College invites applications for two tenure-track faculty positions to begin August 2012. The position will be in one of the following fields:

- Paleoclimatology and Tectonics. Candidates should have expertise in research relevant to paleoclimatology, climate-tectonic interactions, and petrology. They should demonstrate potential for excellence in teaching at both the undergraduate and graduate levels, and be expected to develop a vigorous research program that engages undergraduates. We especially welcome applications from minority group members.

- Evolutionary Biology. Candidates should have a strong commitment to excellence in teaching at the undergraduate level, and be expected to develop and maintain an active research program that engages undergraduates. They should also have experience in teaching undergraduate biology courses and the ability to develop and maintain a strong, externally funded research program.

All qualified candidates are encouraged to apply; however, Canadians and permanent residents will be given priority.

The University of Toronto is strongly committed to diversity within its community and especially welcomes applications from women, Aboriginal persons, persons with disabilities, members of sexual minority groups, and others who may contribute to the further diversification of ideas.

To learn more about SGH and to apply for this position, please visit our website at www.sgh.com or e-mail your resume to Stefania Vives-Carolan, Corporate Recruiter at smererves-carolan@sgh.com or Apply online at www.sgh.com.

Equal Employment Opportunities Employer.

ASSISTANT PROFESSOR GEOLOGY

DEPARTMENT OF CHEMICAL AND PHYSICAL SCIENCES

TWO TENURE-TRACK POSITIONS

CLASSIFIED ADVERTISING

WALTHAM, MASS.

SIMPSON GUMPertz & HEGEr (SGH)

Simpson Gumpertz & Heger (SGH) is actively recruiting an experienced candidate for a position as Petrographer/Consultant in our Waltham, Massachusetts office. SGH is a nationally known civil and structural engineering firm that works in all aspects of design, investigation, and rehabilitation of structures. At SGH, petrographers provide front-line collaborative support to our investigative teams as well as for external clients, including other engineering firms. The successful candidate will work on investigations of concrete, masonry, stone, and related construction materials.

Applicants should have at least 10 years of experience with stone and concrete petrography; meet the requirements of ASTM C656 and C295; and understand the use of supplemental testing and analytical techniques such as XRD, IR, SEM/EDS, and chemical testing. Exceptional communication skills, experience in research and investigations, and a demonstrated ability for managing and developing staff are also required skills.

To learn more about SGH and to apply for this position, please visit our website at www.sgh.com or e-mail your resume to Stefania Vives-Carolan, Corporate Recruiter at smererves-carolan@sgh.com or Apply online at www.sgh.com.

Equal Employment Opportunities Employer.

TENURE-TRACK FACULTY POSITION

SEDIMENTARY GEOLOGY/LOW-TEMPERATURE GEOCHEMISTRY, IOWA STATE UNIVERSITY

The Department of Geosciences at Iowa State University invites applications for a tenure-track faculty position at the assistant professor level to begin August 2012. The position will be in two broad areas: sedimentary geochemistry or low-temperature geochemistry, with particular emphasis placed on research into biogeochemistry, isotope geochemistry, or contaminant hydrogeology. An essential requirement is the potential of applicants to establish a successful, externally funded research program. Ideally that program would complement existing strengths in the department, including climate modeling, paleoclimatology, glaciology, hydrogeology, geochemistry, physics, economic geology, tectonics, and geoscience education. We also encourage interactions with researchers and faculty in other units on campus, such as Agricultural and Biosystems Engineering; Agronomy; Chemistry; Civil, Construction and Environmental Engineering; Geology; and Natural Resources Ecology and Management; the Iowa Water Center; the Leopold Center for Sustainable Agriculture; and the National Labor Center for Agriculture and the Environment. A commitment to excellence in teaching at the undergraduate and graduate levels is also essential. Information about the department is online at www.ge-at.iastate.edu.

Candidates must hold a Ph.D. by the time of appointment. Review of applications will begin immediately and continue until the position is filled. Applications must include a letter of application, which should clearly indicate research and teaching interests and the ability to manage and develop the research program. Please send a letter of application, which should be submitted electronically at www.iastatejobs.com (search vacancy ID# 110650). Please be prepared to submit or attach a letter of application including concise teaching and research statements, curriculum vitae, and the names, addresses, e-mail addresses, and phone and fax numbers of at least three references. The positions will remain open until filled. Full consideration will be given to those applications received by 13 Nov. 2011. We encourage applications from minorities, women, veterans, and persons with disabilities. Iowa State University is an equal opportunity/affirmative action employer.

TENURE-TRACK FACULTY POSITION

WILLIAMS COLLEGE

The Geosciences Dept. at Williams College invites applications for a tenure-track appointment beginning 1 July 2012. We seek a colleague in the broad area of paleoclimatology, paleoecology, stratigraphy, and geobiology. The applicant must have a strong commitment to excellence in teaching at the undergraduate level, and be expected to develop a vigorous research program that engages undergraduates. We especially welcome applications from individuals with a strong field component to their research, but will also consider more laboratory-oriented scientists. The successful candidate will teach three courses per year (lectures plus lab). Teaching responsibilities include historical geology and paleontology, as well as other specialized courses. Examples of such courses include, but are not limited to, sequence stratigraphy, basin analysis, biostratigraphy, paleoecology, evolutionary biology, life in extreme environments, the interaction of organisms with the earth’s crust and atmosphere. The Geosciences Dept. is committed to providing excellent training for future geoscientists, as well as teaching earth science as part of a balanced liberal arts education. Our department also contributes many courses to the Center for Environmental Studies at Williams College. Further information is online at http://web.williams.edu/Geoscience/.

Applicants should have a Ph.D. or dissertation completed by the time of appointment, significant teaching experience, and a vigorous research program suitable for undergraduate student involvement. Appointment is normally at the beginning assistant professor level, although a more senior appointment is possible under special circumstances. Deadline for applications is 31 Oct. 2011. Please send a letter of application, which should include a statement of teaching and research philosophy, curriculum vitae, and contact information for three references, to Paul Karabinos, Chair of Geosciences, Williams College, 947 Main Street, Williamstown, MA 01267, USA; pkarabin@williams.edu.

Williams College is a coeducational liberal arts institution located in the Berkshire Hills of western Massachusetts with easy access to the culturally rich cities of Albany, Boston, and New York City. The College is committed to building and supporting a diverse population of approximately 2,000 students, and to fostering an inclusive faculty, staff and curriculum. Williams has built its reputation on outstanding teaching and scholarship and on the academic excellence of its students. Please visit the Williams College website (www.williams.edu). Beyond meeting fully its legal obligations for non-discrimination, Williams College is committed to building a diverse and inclusive community where members from all backgrounds can live, learn, and thrive.

TWO TENURE-TRACK POSITIONS

PLANETARY SCIENCES

INSTITUTE OF GEOLOGICAL SCIENCES

POLISH ACADEMY OF SCIENCES

The Institute of Geological Sciences of the Polish Academy of Sciences is initiating the first planetary geology research program in Poland. The Research Centre in Wroclaw is seeking highly qualified and motivated scientists to work on a range of fundamental topics in planetary geoscience. Two new tenure-track positions are now available in our group: one in Martian geoscience, one on the evolution of the early solar system. The successful candidates will develop a strong research program in their research area. The group, supported by the European Union and the Foundation for Polish Science, will develop in the context of preparations for affiliation of Poland to ESA. The lab is located in downtown Wroclaw, one of the most dynamic cities in Poland, and offers pleasant living conditions at a short distance to the Sudetes Mountains. The candidates must have obtained a Ph.D. after 1 Jan. 2008. Remuneration amounts to 4800 PLN/month, which is...
HYDROGEOLOGIST, Brigham Young University

The Dept. of Geological Sciences at Brigham Young University invites applications for a continuing tenure track position (BYU's equivalent of "tenure track") Professorial Faculty position in the area of hydrogeology to be filled as early as Fall 2012. For detail about the positions and information on how to apply please visit www.apsu.edu/human-resources/faculty/CurrentOpenPositions and complete an on-line application by 31 Oct 2011 and will continue until the position is filled. Information about the department is online at www.apsu.edu/geosciences.

Excellent research infrastructure exists within the department, including collaboration supports suitable stable isotope, H, and O analysis. Shallow geophysical equipment enables ground penetrating radar, and high-resolution seismic reflection surveys.

The department consists of 13 professorial faculty and 3 professional faculty, and offers B.S. and M.S. degrees. In addition to hydrogeology, major research areas include petroleum geology, paleoecology, stratigraphy, and tectonics. The successful candidate also must be able to teach hydrogeology to advanced undergraduates, graduate courses within his or her area of expertise, and introductory geology courses assigned.

Applications should complete an online faculty application at http://jobs.byu.edu (faculty position #110618). Graduate transcripts, a statement of research and instrument experience, a statement of teaching philosophy, and the names and contact information for 3 references should be sent to: Chair, Search Committee, Dept. of Geological Sciences, S-389 ESC; Brigham Young University, Provo, UT, 84602. The application deadline is January 31, 2012. You may obtain instructions for completing the online faculty application from Kris at kris.mortenson@byu.edu.

Brigham Young University, an equal opportunity employer, is committed to an inclusive environment and welcomes qualified candidates, in addition to teaching duties appropriate to the appointed rank. University of Washington faculty engage in teaching, research and service. Appointment as Assistant Professor includes the expectation to develop and maintain a research program leading to peer-reviewed publications.

We seek candidates with expertise in applied geomorphology broadly defined, including: fluvial and/or hillslope geomorphology, engineering geography, earth-system sciences and/or environmental geochemistry. Experience with GIS applications and/or QGIS applications in surface processes. We are particularly interested in early interdisciplinary researchers who have demonstrated close ties with the private sector and/or governmental agencies.

Opportunities for collaboration exist with current departmental research in surface process, solid earth geology and geophysics, space physics, geobiology and planetary processes. The department is also part of an extended research community in the UW's College of the Environment, with interdisciplinary opportunities in forestry, fisheries, oceanography, Quaternary research, climate change, and civil engineering.

Assistants to the successful candidate will be able to "retrofit" their CV's with teaching responsibilities and academic qualifications. Indiana University of Pennsylvania offers eleven undergraduate majors and minors in the Geosciences.

Applicants must hold a Ph.D. in geology/earth sciences or a closely related field at the time of appointment. Exceptional candidates with a MS degree in geology/earth sciences or a closely related field and more than 5 years experience as professional geologists may also be considered.

Applications must include: curriculum vitae and list of publications/insights, a statement of teaching experience and interests particularly with regard to training students for work as professional geologists. Applications may be submitted directly to the search committee by the referees. Electronic application is strongly preferred and must be in PDF format. Send to: geomorphology@iup.edu, with subject line "Applied Geomorphology, (your name)." Hard-copy applications and reference letters may be sent to: Professor Mary R. Hill, Search Committee Chair, Dept. of Geography, Indiana University of Pennsylvania, 101 North Third St., Indiana, PA 15705-3036. The deadline for completed applications is 1 Nov. 2011.

The University of Washington is an affirmative action, equal opportunity employer.
ASSISTANT PROFESSOR OF GEOLOGY (SUSAN CUNNINGHAM RESEARCH CHAIR) GEOLOGY, SCHOOL OF GEOGRAPHY AND EARTH SCIENCES
EASTERN MICHIGAN UNIVERSITY

The School of Geography and Earth Sciences (SGES) at McMaster University in Hamilton, Ontario, Canada, invites applications for a full-time tenure-track position in geology at the Assistant or Associate Professor level beginning 1 July 2012.

The position is among leading Canadian universities with 24,000 full time undergraduate and 3,000 full time graduate students. SGES has 29 full time faculty members, and has a long tradition of excellence in research and teaching in geology. For more information about SGES, please visit www.science.mcmaster.ca/geo.

Application Process:

The successful candidate is expected to develop an externally funded research program that includes specimens curated at the Cooper Center and resulting in peer-reviewed publications in refereed journals. Teaching responsibilities include one of the following: physical geology, historical geology, paleontology, and/or upper division and graduate courses in the geology major. In addition to teaching responsibilities, other service activities include promotion of the Collection within the scientific community and outreach to the regional educational community.

CUF Fullerton is a full-service city renowned for its unique mix of residential, commercial, and cultural environments that provide residents with an outstanding quality of life. The department has thirteen full-time faculty members with expertise in traditional areas of the geological sciences. The nearby geological provinces provide abundant opportunities for field-based research, which the department emphasizes in its curriculum. There are over 100 undergraduate geology majors and ~20 M.S. students in the department. Additional information is online at http://geology.fullerton.edu.

To apply, please send the following:

1. A detailed vita including a record of your past external funding.
2. A letter of application that explains how you meet the requirements of the position.
3. A statement of your future research plans and goals as they relate to the collections in the Cooper Center.
4. A statement of your teaching philosophy including a list of courses you would feel comfortable teaching.
5. Letters of recommendation from at least three references familiar with your research, curation, and teaching.

Send application to: Crustal Materials Search Committee, c/o Nathan Adovasio, Department of Anthropology, Box 35130, Seattle, WA 98195-1301. Preference will be given to applications received prior to 1 Nov. 2011. The University of Washington is an affirmative action, equal opportunity employer.

DEPT. OF GEOLOGY, BAYLOR UNIVERSITY

The Dept. of Geology at Baylor University invites applications for tenure-track positions in mineralogy or Petrology, beginning August 2012. Applicants must hold a Ph.D. in geophysics, physics, or geology with an emphasis in experimental mineralogy and petrology. The department currently consists of 16 geoscientists (www.baylor.edu/Geology/).

The successful candidate should have the potential to attract external funds and to build a strong research program. At Baylor, the Geology Program and the Seismological Laboratory, housed in the O.R. B. Dunn Geosciences Building, is available in the state-of-the-art, 500,000 ft² Baylor Sciences Building.

To apply, send a letter of application, including statement of teaching and research interests, curriculum vitae, copies of transcripts, and the names and contact information for three references to Dr. Jay Pulliam, Chair, Search Committee, Dept. of Geology, Baylor University, One Bear Place, Box 21204, Waco, TX 76798-7354 (+1-254-710-2361; e-mail: Jay.Pulliam@baylor.edu). Applications should be received prior to 1 Dec. 2011 and will be accepted until the position is filled. To ensure full consideration, application must be submitted before 1 Dec. 2011. Baylor is an equal opportunity/affirmative action employer affiliated with the Baptist General Convention of Texas. As an Affirmative Action/Equal Opportunity employer, Baylor encourages minority women, veterans and persons with disabilities to apply.

DEPT. OF GEOLOGY, BAYLOR UNIVERSITY

The Dept. of Geology at Baylor University invites applications for a tenure-track Assistant Professor in mineralogy or Petrology, beginning August 2012. Applicants must hold a Ph.D. in geology at the time of appointment. The department currently consists of 16 geoscientists (www.baylor.edu/Geology/).

Research: We seek an individual with research interests in mineralogy, igneous or metamorphic petrology or high-temperature geochemistry who is capable of participating in departmental research. Experience working in building a strong, externally funded research program. Research experience is available in the 500,000 ft² “state-of-the-art” Baylor Sciences Building. Research equipment current available includes a Siemens D5000 X-ray powder diffractometer, a Thermo Finnigan VG Delta S mass spectrometer, a Thermo Finnigan VG Delta V IRMS and sample preparation facilities including a high-temperature fume hood and high-temperature furnace. A shared ICP-MS instrument is also available, as well as a SEM, TEM, and confocal microscopy in a shared lab facility.

Teaching: We seek an individual with a strong commitment to excellence in teaching, and require the candidate to contribute to both undergraduate and graduate programs in geology and/or petroleum geology.

ASSISTANT PROFESSOR OF GEOLOGY (TENURE-TRACK POSITION: ASSISTANT PROFESSOR AND CURATOR OF PALEONTOLOGY) UNIVERSITY OF WASHINGTON, FULLERTON

The Department of Geology at the University of Washington invites applications for a full-time (100% FTE) 9-month tenure-track position in the area of crustal materials that will have expertise in experimental petrology. This position will be in the newly established John D. Cooper Archaeology and Paleontology Curatorship. The successful candidate will have the following credentials and experience:

- Ph.D. in Geology or a related field with emphasis in Vertebrate Paleontology;
- experience in vertebrate fossil collection, accession, and management;
- a vigorous research program in vertebrate paleontology that can involve undergraduate and graduate students;
- strong interest in teaching and achieving excellence in teaching;
- the interest and ability to interact effectively with an ethnically and culturally diverse campus community.

Applications will begin 15 Nov. 2011. The successful candidate will be sent to: Crustal Materials Search Committee, c/o Nathan Adovasio, Department of Anthropology, Box 35130, Seattle, WA 98195-1301, +1-206-543-1190. Preference will be given to applications received prior to 1 Nov. 2011. The University of Washington is an affirmative action, equal opportunity employer.

CRUSTAL MATERIALS UNIVERSITY OF WASHINGTON

The Dept. of Geology at the University of Washington invites applications for a full-time (100% FTE) 9-month tenure-track position in the area of crustal materials that will have expertise in experimental petrology. This position will be in the newly established John D. Cooper Archaeology and Paleontology Curatorship. The successful candidate will have the following credentials and experience:

- Ph.D. in Geology or a related field with emphasis in Vertebrate Paleontology;
- experience in vertebrate fossil collection, accession, and management;
- a vigorous research program in vertebrate paleontology that can involve undergraduate and graduate students;
- strong interest in teaching and achieving excellence in teaching;
- the interest and ability to interact effectively with an ethnically and culturally diverse campus community.

Applications will begin 15 Nov. 2011. The successful candidate will be sent to: Crustal Materials Search Committee, c/o Nathan Adovasio, Department of Anthropology, Box 35130, Seattle, WA 98195-1301, +1-206-543-1190. Preference will be given to applications received prior to 1 Nov. 2011. The University of Washington is an affirmative action, equal opportunity employer.

TENURE-TRACK APPLIED GEOPHYSICIST DEPT. OF GEOLOGY, BAYLOR UNIVERSITY

The Dept. of Geology at Baylor University invites applications for tenure-track positions in Geophysics, beginning August 2012. Applicants must hold a Ph.D. in geophysics, physics, or geology with an emphasis in experimental mineralogy and petrology. The department currently consists of 16 geoscientists (www.baylor.edu/Geology/).

The successful candidate should have the potential to attract external funds and to build a strong research program. At Baylor, the Geology Program and the Seismological Laboratory, housed in the O.R. B. Dunn Geosciences Building, is available in the state-of-the-art, 500,000 ft² Baylor Sciences Building.

The successful candidate should have the potential to build a vibrant teaching program involving graduate students, as well as teach undergraduate courses in geophysics and/or petroleum geology.

Application Process: Send letter of application, including statement of teaching and research interests, curriculum vitae, copies of transcripts, and the names and contact information for three references to Dr. Jay Pulliam, Chair, Search Committee, Dept. of Geology, Baylor University, One Bear Place, Box 21204, Waco, TX 76798-7354 (+1-254-710-2361; e-mail: Jay.Pulliam@baylor.edu). Applications should be received prior to 1 Dec. 2011 and will be accepted until the position is filled. To ensure full consideration, application must be submitted before 1 Dec. 2011. Baylor is an equal opportunity/affirmative action employer affiliated with the Baptist General Convention of Texas. As an Affirmative Action/Equal Opportunity employer, Baylor encourages minority women, veterans and persons with disabilities to apply.

CLASSIFIED ADVERTISING

View Classified and GeoMart ads online at www.geosociety.org/advertising.htm
and petrology courses, as well as contributing to the graduate (M.S. and Ph.D.) programs in Geology by teaching graduate courses or seminars in his/her areas of specialization.

Application Process: Send letter of application, including statement of teaching and research interests, curriculum vitae, copies of transcripts, and the names and contact information for three references to Dr. Steve Dworkin, Chair, Search Committee, Dept. of Geology, Baylor University, One Bear Place #97354, Waco, TX 76798-7354 (1-254-710-2361; e-mail Steve.Dworkin@baylor.edu). The review of applications will begin 15 Dec. 2011. To ensure full consideration, application must be completed by 1 Jan. 2012. Baylor is a Baptist university affiliated with the Baptist General Convention of Texas. As an Affirmative Action/Equal Opportunity employer, Baylor encourages minorities, women, veterans and persons with disabilities to apply.

VISITING ASSISTANT PROFESSOR IN GEOLOGY PALEONTOLOGY/SOFT-ROCK GEOLOGY COLBY COLLEGE

The Dept. of Geology invites applications for a one-year, non-tenure track, Visiting Assistant Professor in paleontology and soft-rock geology beginning 1 Sept. 2012. The successful applicant will be expected to teach a core-curriculum Paleontology course (200-level: Record of Life) with laboratory and an upper division course of his/her choice for geology majors during the academic year. The upper division course should complement those already offered in the department. The remainder of the teaching assignment will be an introductory course offering (100-level) for potential majors and non-majors. Additionally, the candidate may have the opportunity to direct one or more independent research projects. Colby is a highly selective liberal arts college recognized for excellence in undergraduate education and for close student-faculty interaction. Ph.D. with teaching experience at time of employment preferred; ABDs encouraged to apply. Applicants should submit a letter of application, curriculum vitae, statements of teaching and research interests, and three letters of reference to Dr. Robert A. Gastaldo, Chair, Dept. of Geology, 5807 Mayflower Hill Drive, Waterville, ME 04901. Review of applications will begin 14 Nov. 2011 and will continue until the position is filled. Colby is an Equal Opportunity/Affirmative Action employer, committed to excellence through diversity, and strongly encourages applications and nominations of persons of color, women, and members of other under-represented groups. For more information about the college, please visit www.colby.edu.

EARTH SYSTEMS SCIENTIST STRUCTURAL GEOLOGY/TECTONICS TENURE-TRACK POSITION, DEPT. OF EARTH AND ENVIRONMENTAL SCIENCES, BOSTON COLLEGE

The Dept. of Earth and Environmental Sciences at Boston College invites applications for a tenure-track position in the area of Structural Geology/Tectonics to start Fall 2012. The successful candidate will be expected to develop an externally-funded research program integrated with excellence in teaching within the geological sciences and environmental geosciences curriculum and both the undergraduate and graduate levels. Teaching responsibilities include courses in structural and field geology as well as others in the candidate’s area of expertise. Specific research subfields of the successful applicant could include crustal dynamics, thermochronology, tectonic history of orogenic belts, tectonic-climate interactions, palaeoecosystemology, and/or active deformation/geodesy. The department is equipped with a mineral separation laboratory including Wilfley table, heavy liquids separation lab, Franz magnetic separator, and stereomicroscope. Other labs in the department include state-of-the-art petrographic microscopes, a laser Raman micro-spectroscopic imaging system, and an isolate ratio mass spectrometer for light stable isotope analyses. Information on the department, its faculty and research strengths can be viewed at www.bc.edu/eessciences. Applicants should send a curriculum vitae, statements of teaching and research interests, and the names and contact information of at least three references as a single PDF-file mail attachment to tectonics-position@bc.edu. Review of applications will begin 28 Oct. 2011. Department faculty will be available at the GSA and AGU fall meetings to meet with applicants. Boston College is an academic community whose doors are open to all students and employees without regard to race, religion, age, sex, marital or parental status, national origin, veteran status, or handicap.

FACULTY POSITION, PALEOCEANOGRAPHY/ OCEAN SCIENCE, UNIVERSITY OF ROCHESTER

The Dept. of Earth and Environmental Sciences invites applications for a tenure-track faculty position in paleoceanography and ocean science. The rank of the position is open, with a start date on 1 July 2012. We are interested in a dynamic educator and researcher who can build an externally funded program through strong links to the international ocean science and global change communities. Preference will be given to applicants who can contribute to the development of a new program in global sustainability and can build cross-disciplinary programs involving undergraduate and graduate students that complement the University of Rochester’s existing programs in climate change, geodynamic-climate interactions, geohazards, and Earth and planetary evolution. See www.ees.rochester.edu for more information about the department’s strengths in climate science, geochemistry, geophysics, petrology, sedimentology, and tectonics. The University of Rochester is a highly ranked research university, and Rochester’s cultural, educational, and recreational assets consistently place the city in the top 10 places to live within the U.S. Applicants should submit materials via the following web site: https://www.rochester.edu/facultysearch/. Materials include a curriculum vitae, select reprints, statements of research and teaching goals, and the names and contact information of four references. An additional statement is requested that describes your view of sustainability education in Earth Science and how it can be integrated with broader education in sustainability. The review of applicants will begin 15 Dec. 2011 and will continue until the position is filled. The University of Rochester, an equal opportunity employer, has a strong commitment to diversity and actively encourages applications from candidates from groups underrepresented in higher education.

Opportunities for Students

4 Ph.D. grants in planetary sciences. The Institute for Ocean Sciences, a Geological Society of America (GSA) chapter, is initiating the first planetary geology research program in Poland. The Research Centre in Wroclaw is seeking dynamic and motivated candidates for 4 Ph.D. grants to contribute to implementing this program, supported by the European Union and the Foundation for Polish Science. We hope you will be a part of this extraordinary opportunity to found a new center in planetology.

The contracts are for 3.5 years, starting 1 Jan. 2012. The research topics are in the field of comparative planetology, with emphasis on how Mars can help solve general geoscience issues, relating to e.g. mass wasting processes, lithosphere mechanics, and early planetary environments.

The candidates must hold a master's degree in geology, geophysics, geography, or physics. Stipend is 3500 PLN/month, which is well above mean Ph.D. grants in Poland, and excellent for a student’s life in the country. The deadline for applying is 25 Oct. 25, 2011; details and how to apply can be retrieved from www.ing.pan.pl/PlanetaryScienceJobs.htm or by contacting the project PI at daniel.migne@twarda.pan.pl.

C-DEBI Graduate Student Fellowships for Deep Subseafloor Biosphere Research. The Center for Dark Energy Biosphere Investigations (C-DEBI) Graduate Fellow Program supports graduate student research in C-DEBI community projects. C-DEBI Graduate Student Fellowships are encouraged to examine the IODP Expedition Schedule prior to developing their research proposal as all fellowship research is expected to align with the objectives of an IODP Expedition that involves research into the deep biosphere. C-DEBI encourages women and minorities to apply. This funding is only available to graduate students sponsored in US institutions. The next deadline for this semi-annual call is 10/31/11. For details, visit the C-DEBI Graduate Fellowship website: www.darkenergybiosphere.org/education/graduatelfellows.html.

The Minorities in Scientific Ocean Drilling Fellowship is funded through the U.S. Implementing Organization (USIO) for the Integrated Ocean Drilling Program (IODP) to encourage minority graduate students studying geoscience or engineering to complete research in topics related to scientific ocean drilling. The Spring 2012 Fellowship will award $20,000 to an outstanding student whose research is using data and/or materials obtained from scientific ocean drilling or who is developing technology that will help advance science or engineering in scientific ocean drilling research. Projects that are the applicant’s own endeavor will be more favorably viewed.

The fellowship is open to graduate students that are a member of a racial or ethnic minority group and who are enrolled in a geoscience or engineering program at any U.S. university or college. The deadline to apply is 31 Oct. 2011. For details, visit www.oceanleadership.org/education/diversity/minorities-in-scientific-ocean-drilling-fellowship/

Graduate Research Opportunity, Nanogeoecoscience, Baylor University. The geology department at Baylor anticipates a graduate research position starting January 2012. The graduate student will work with Dr. Bill Hackaday (analytical/organic geochemistry) and Dr. Boris Lau (nanogeoecoscience) studying the fate and transport of mineral nanoparticles in aquatic systems. Highly motivated candidates with a BS/MS degree in relevant science and/or engineering disciplines will be considered. Successful applicants must possess excellent English communication skills. Qualified applicant will be funded with competitive stipend, benefits, and travel support to attend professional meetings and seminars. Prospective candidates are encouraged to submit their CVs to Dr. Boris Lau (boris_lau@baylor.edu) and/or Dr. Bill Hackaday (william_hackaday@baylor.edu). Please use “Lau-Hackaday Research Opportunities” in the subject line.

Baylor is a Baptist university affiliated with the Baptist General Convention of Texas. As an Affirmative Action/Equal Employment Opportunity employer, Baylor encourages minorities, women, veterans, and persons with disabilities to apply.
CALL FOR PROPOSALS

TECHNICAL SESSIONS
Deadline: 10 Jan. 2012

Help ensure that your area of research and expertise is represented in next year’s technical program. Individuals, groups, and geosciences organization are welcome to suggest topics and submit proposals for both Topical Sessions and Pardee Keynote Symposia. Pardee Symposia are high-profile sessions on significant scientific developments, with invited speakers only. Topical Sessions are a combination of invited and volunteered papers. Unique formats are allowed, but they must be outlined in the proposal, along with the technical support needs. Sessions that promote discussion are encouraged.

FIELD TRIPS
Deadline: 1 Dec. 2011

Know of a great geoscience excursion near Charlotte, North Carolina, USA? Teach your colleagues and peers about the ground-breaking research in this region. Submit your idea for a fun, interesting, and educational field trip for the 2012 Annual Meeting online at http://gsa.confex.com/gsa/2012AM/fieldtrip.htm. Trips can be anywhere from a half day to 5 days long. Questions? Please contact Beth Engle, +1-303-357-1006, bengle@geosociety.org.

SHORT COURSES
Deadline: 1 Feb. 2012

Have something that your peers need to know? Then lead a Short Course at the 2012 GSA Annual Meeting in Charlotte! Proposals for Short Courses are now being accepted. Courses can be run to develop professional, teaching, and research skills at all levels. Proposal guidelines are available online or by contacting Jennifer Nocerino at jnocerino@geosociety.org.

Looking ahead to 2012
Can You Read Me Now?

GSA Launches Mobile-Optimized Publications Sites

Over the past two years, the percentage of visitors accessing GSA's publications sites from mobile devices has doubled, doubled again, and nearly doubled again.

In response, GSA is pleased to announce mobile-optimized publications sites for the journals at www.gsapubs.org. Visit any of the journal pages with a mobile phone and you'll be automatically redirected to a slimmed-down version of the website. You'll be able to access the same great content, although with fewer graphics for faster browsing. Larger buttons and finger scrolling allow you to read, skim, search, and e-mail yourself articles for a closer read later.

So remember, the next time you're in the field and you're trying to recall if it was J. Hower or M. Hower who wrote the classic GSA Bulletin paper on burial metamorphism of argillaceous sediment, the answer is only a click away.

Start browsing at www.gsapubs.org.

To subscribe, contact gsaservice@geosociety.org, or call +1-888-443-4472, or +1-303-357-1000, option 3.
Professional Development for Geoscientists at the University of Pennsylvania

Penn’s Master of Science in Applied Geosciences (MSAG) combines expertise in the theoretical areas of geology with technical expertise in geochemistry, geophysics, hydrogeology, and engineering geology.

Penn offers a concentration in Engineering Geology:
- Engineering and mechanical properties and behavior of soils, water, and rocks.
- Special geotechnical issues, from erosion and slope stability to geological hazards and engineered structures.

Learn about all three MSAG concentrations on our website.

Penn’s Earth and Environmental Science Department awards one merit-based two-semester MSAG Scholarship in the Fall semester of each academic year.

Geoscience professionals stand out with a degree from Penn.

www.sas.upenn.edu/lps
OR SEARCH penn msag

Penn LPS College of Liberal & Professional Studies
get the inside knowledge

Stable & Cosmogenic Isotope science

Isotopes are the key to knowledge about our past, present and our future. Our isotope analysis services can help you unlock the answers to ecological, geological and environmental history.

We provide carbon, nitrogen, sulphur, oxygen and hydrogen stable isotope analysis, 14Be, 23Al, 137Cs and 207Pb dating, and offer discounts for volume submissions.

Our analysis is backed by world-leading scientists whose research spans climate, environmental protection and sustainability, geology, and hydrocarbons, and is supported by expert technicians.

To know more about benefitting from the expertise of the GNS Science Stable Isotope Laboratory please visit

www.gns.cri.nz/nic/stableisotopes

or Email us at

stableisotopes@gns.cri.nz

unlock a moment in time

Rafter Radiocarbon dating services

When you seek knowledge of "a moment in time" Rafter Radiocarbon can provide the answers. We offer world-leading research scientists whose research spans climate, environmental protection and sustainability, archaeology, and geology, supported by expert technicians and modern equipment including a

new AMS. We have worked with clients world-wide for over 50 years and we are a regular participant in the International Radiocarbon Intercomparisons.

Contact us for a FREE consultation on applicability and sampling.

To know more about benefitting from the expertise of Rafter Radiocarbon please visit

www.rafterradiocarbon.co.nz

or Email us at

radiocarbon@gns.cri.nz

CHECK OUT OUR PROMOTIONS AT MINNEAPOLIS
Booth 506