Dates and Rates of Arid Region Geomorphic Processes
EnviroINSITE

Powerful engine for understanding and communicating complex spatial and temporal patterns in subsurface environmental and geologic conditions.

Easy to use and low priced make it ideal for installation on every desktop.

Compatible with MS Office, all conventional GIS, CAD and image file formats, EQuIS, and the entire line of RockWare products.

Multi-seat and academic discounts available. Fully functional, free 30-day trial available from www.rockware.com

EnviroINSITE® is a registered trademark of HydroAnalysis, Inc.

$599

Academic Pricing Available
SCIENCE ARTICLE

4 Dates and rates of arid region geomorphic processes
Kyle K. Nichols, Paul R. Bierman, W. Ross Foniri, Alan R. Gillespie, Marc Caffee, and Robert Finkel

2006 GSA Annual Meeting & Exposition

12 Field Trips
15 Short Courses
17 K–12 Education Events
18 For Students Only

19 New GSA Members

22 2006–2007 Congressional Science Fellow Named: Craig Cooper
22 Call for Applications: 2007–2008 GSA–USGS Congressional Science Fellowship
23 Call for Geological Papers: 2007 GSA Section Meetings
23 EarthCache EventCache
24 GSA Foundation Update
26 Announcements
26 In Memoriam
28 Classified Advertising
29 Journal Highlights
30 GeoMart Geoscience Directory

Erratum: In the July issue of GSA Today (v. 16, no. 7, p. 15), new GSA Fellow Lynda B. Williams’ affiliation was listed as the University of Arizona. The correct affiliation is Arizona State University at Tempe.
Dates and rates of arid region geomorphic processes

Kyle K. Nichols*, Department of Geosciences, Skidmore College, Saratoga Springs, New York 12866, USA; Paul R. Bierman*, Department of Geology, University of Vermont, Burlington, Vermont 05405, USA; W. Ross Foniri, Department of Geosciences, Skidmore College, Saratoga Springs, New York 12866, USA; Alan R. Gillespie, Quaternary Research Center, Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195, USA; Marc Coffeeh, Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94405, USA; and Robert Finkel, Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94405, USA.

ABSTRACT

Analysis of in situ–produced cosmogenic nuclides, including 10Be, 26Al, and 36Cl, has changed how geologists understand desert surface processes. Here, we provide a series of examples from arid mountain-piedmont systems that illustrate both the power and limitations of this geochronometer. Analyses of samples collected from bare bedrock surfaces at the Alabama Hills, California, demonstrate slow but variable (1.4–20 m m.y.−1) rates of erosion, whereas cosmogenic dating of the Blackhawk landslide debris (~6.5–31 k.y.) and the Castle Dome piedmont allows linkages between landscape-scale processes and climate change. However, data show that nuclides inherited from prior periods of exposure, as well as the effect of post-depositional surface change, limit the accuracy and precision of exposure dating in some settings. On the broad Castle Dome piedmont, detailed isotopic stratigraphies, coupled with analysis of desert soils, indicate depositional histories over the past ~70 k.y. in the absence of radiocarbon-datable organic material. Transect-based amalgamated sampling techniques allow for estimation of sediment velocity down mountain-fringing piedmonts. In drainage basins, the concentration of 10Be in fluvial sediment demonstrates the efficacy of fluvial mixing even in areas where surface flow is intermittent. Considered together, these applications of the cosmogenic technique allow the delineation of sediment budgets in areas where no other technique has been useful. Such data are important for the arid Southwest, where population is increasing rapidly, as is the interaction of society and surface processes.

INTRODUCTION

Desert landscapes contain a rich record of geomorphic and geologic change (Cooke et al., 1993). Over the past century, geomorphologists and pedologists have used a variety of approaches, such as interpreting and dating sediments from dry-lake playas (Enzel, 1992; Lowenstein, 2002; Anderson and Wells, 2003), alluvial fans (Harvey and Wells, 2003; McDonald et al., 2003), and landforms offset by fault systems (Weldon et al., 2004; Matmon et al., 2005), to determine the effects of climate change on sediment generation and transport systems and to quantify process rates. Such studies allow us to understand the broad timing of sediment deposition and erosion, their drivers, and the overall rates and processes of soil development. However, at finer temporal and spatial resolution, there is significant variability in the data, which often makes it difficult to interpret because numeric age-control is frequently lacking. Furthermore, the timing of older events is often inferred solely from the behavior of the system during more recent 14C-datable climatic and tectonic episodes. Quantifying rates and dates beyond the 40–50 k.y. limit of radiocarbon dating not only allows geologists to test long-standing hypotheses regarding desert process behavior during climate change (e.g., Bull, 1991), but also allows for systematic evaluation of the effects of lithology, nonglacial climate change, tectonics, and other potential drivers of landscape change.

Determining rates of surface change in the desert is no simple task. Most desert surfaces change imperceptibly over human time scales (Webb, 1996) because much geomorphic work in arid climates is accomplished during large but infrequent storm events (Schick, 1977; Cooke et al., 1993). Quantifying the effects of such storms, both spatially and temporally, requires expensive and time-consuming monitoring programs (Schick, 1977; Persico et al., 2005). Over millennia, the timing of such events is difficult to establish because dry desert climates are not conducive to the generation or preservation of plant material for radiocarbon analysis, the standard means by which late Quaternary deposits are dated and rates of surface change are often calculated (Bull, 1991). It is clear that major advances in the understanding of desert landforms and the rate at which they shed sediment require widely applicable, quantitative, and reliable chronometers. In this paper, we present new data to illustrate both the promise and limitations of cosmogenic nuclides when combined with field data as a tool for understanding arid-region geomorphic systems. Many of the approaches we present are also applicable to other climatic and tectonic settings (Bierman and Nichols, 2004).

CASE STUDIES

Fundamental to the application of cosmogenic nuclides as a monitor of desert surface processes is understanding that (1) most production of cosmogenic nuclides occurs near Earth’s surface and (2) production decreases to minimal rates at depths of several meters. The measured concentration of isotopes, such as 10Be, reflects the near-surface residence time, or cosmic-ray closing, of a mineral grain. This leads to an inverse relationship between nuclide concentration and erosion rate and a direct relationship between surface age and nuclide con-

GSA Today v. 16, no. 8, doi: 10.1130/GSAT01608.1

*E-mails: knichols@skidmore.edu; Paul.Bierman@uvm.edu

†Current address: PRIME Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
centrations. Here, we present a series of three case studies from sites in southern Arizona and California (Fig. 1) that highlight both the utility and limitations of using cosmogenic nuclides to study arid-region geomorphology and the landscape-scale continuum of sediment production, transport, and deposition.

Case 1—Sediment Production from Eroding Rock: The Alabama Hills, California

You have probably seen the Alabama Hills even if you’ve never been there. This weathered granite landscape in the shadow of the Sierra Nevada is one of Hollywood’s favorites, providing backdrops for John Wayne movies, Subaru Outback ads, and the subterranean monsters of the movie Tremors. Despite the visual popularity of this and other bare rock landscapes, little is known about the rates of bedrock weathering, which is a problem because weathering-limited bare-rock slopes play an important role as sources of desert sediment (Bull, 1991) and runoff (Yair and Kossovsky, 2002). Without knowledge of bare-rock erosion rates, one cannot craft accurate and useful sediment budgets (Dietrich and Dunne, 1978).

The Alabama Hills, dominated by varnished tors and inselbergs that crop out of small but distinct grus-mantled pediment surfaces (Fig. 2A), are a down-faulted block of deeply weathered and jointed granite (Richardson, 1975; Chen and Tilton, 1991) that sit ~3000 m below the crest of the Sierra Nevada but well above the deeply alluviated bedrock floor of adjacent Owens Valley (Pakiser et al., 1964). The linear eastern margin of the Hills appears to be controlled by the Owens Valley fault system (Beanland and Clark, 1993), whereas to the west their margin is convoluted and buried by debris fans shed from the Sierra Nevada (Bierman et al., 1994).

To estimate the rate at which the Alabama Hills are eroding, we obtained 20 measurements of 10Be from quartz that had been separated from samples of exposed rock. This provides a direct measure of bedrock landscape stability (Fig. 2; Data Repository Table DR1). The samples were collected from three distinct geomorphic environments (Bierman, 1993) in order to test the hypothesis that heavily varnished, high-standing landforms were eroding more slowly than nonvarnished, lower geomorphic features. Five samples were collected from the top or sides of dark, high inselbergs, which stand tens of meters above low-lying, colluvium-covered valleys within the Alabama Hills. These high inselbergs are losing mass primarily via detachment of 1–3-cm-thick rock sheets (Fig. 2B). Seven samples were collected from more topographically isolated low inselbergs 5–20 m above the adjacent pediments or colluvial surfaces (Fig. 2C). Eight samples were collected from unvarnished, flat-lying bedrock pediment surfaces sloping away from the inselbergs (Fig. 2D). Unlike the inselbergs, the pediment surfaces appeared to be losing mass primarily by granular disintegration.

Field observations and isotopic data show that the inselbergs and pediments of the Alabama Hills are dynamic landforms losing mass over time and shedding sediment onto adjacent colluvial surfaces. All samples contain significant amounts of cosmogenically produced 10Be, 0.45–5.4 $\times 10^6$ atoms g$^{-1}$. If we interpret the data as reflecting nuclide concentration in steadily eroding surfaces, model erosion rates range from 1.4 to 20 m/m.y. and are related to the sampled geomorphic environment (Fig. 2E). The high inselbergs are the most stable, eroding at 5.4 ± 2.7 m/m.y. ($n = 5$); the low inselbergs are eroding at 7.2 ± 3.2 m/m.y. ($n = 7$); and the pediments are least stable, eroding on average at 11.1 ± 4.5 m/m.y. ($n = 8$). It is possible that the bare-rock pediment surfaces we sampled were exposed by the recent stripping of colluvium or alluvial cover; thus, the inferred erosion rates are maxima. In any case, the pediment surfaces we sampled experienced less cosmic-ray dosing than the inselbergs.

The isotopic data are consistent with bare-rock erosion rates for granite measured in other arid regions of North America (Nishiizumi et al., 1986; Bierman and Turner, 1995) and Namibia (Bierman and Caffee, 2001). In all of these cases, erosion rates are higher than those indicated by samples collected from Australian granite surfaces, particularly those on the semiarid Eyre Peninsula, where many samples indicate erosion rates on the order of ≤1 m/m.y. (Bierman and Caffee, 2002). It does not appear that precipitation or temperature play major roles in setting the rate of bare-rock erosion (Bierman and Caffee, 2001; Riebe et al., 2001), with the possible exception of Australian granites (Bierman and Caffee, 2002). Therefore, we

Figure 1. Location of case studies. The Alabama Hills (AH) are in Owens Valley near Lone Pine, California (CA); the Blackhawk slide (BH) is in the Mojave Desert near Apple Valley, California; and the Castle Dome piedmont (CD) is north of Yuma, Arizona (AZ). Background is a true color image of the American Southwest taken in January 2004 (courtesy of the National Aeronautics and Space Administration’s Blue Marble: Next Generation database); NV—Nevada; UT—Utah.

1Data repository item 2006166, cosmogenic isotope data for the Alabama Hills, the Castle Dome piedmont, and the Blackhawk landslide, is available on the Web at www.geosociety.org/pubs/ft2006.htm. You can also obtain a copy by writing to editing@geosociety.org.
suspect that the measured variation in the Alabama Hills bare granite erosion rates may result primarily from differences in joint frequency and spacing, as suggested by Twidale (1982). The inselbergs may be blocks of less-jointed rocks that have greater topographic relief today because they are eroding more slowly, as indicated by the cosmogenic data, than their low-lying brethren. Alternatively, the valleys and peaks of the Alabama Hills may be inherited features, and the isolation of the inselbergs from erosion catalysts, such as soil moisture and wildfire (Bierman and Gillespie, 1991), may explain their stability and relatively low rates of erosion.

Case 2—Sediment Deposition on the Castle Dome Piedmont, Arizona

After sediment is shed from mountainous uplands, it is transported to and deposited on low-gradient alluvial slopes, or piedmonts. Such deposits have the potential to reveal important events in surface histories, such as the timing of fan incision...
(Liu et al., 1996), the timing and rate of tectonic activity (Biermann et al., 1995; Zehfuss et al., 2001; Phillips, 2003; Matmon et al., 2005), and the rate of surface aggradation (Nichols et al., 2002, 2005b). Here, we present \(^{10}\)Be data from a soil pit dug into a piedmont that has a well-developed and varnished pavement extending as an apron from the Castle Dome Mountains in Arizona (Fig. 3; Data Repository Table DR2 [see footnote 1]). These data demonstrate how cosmogenic nuclide data complement traditional soil profile descriptions, providing more precise age control and quantifying piedmont process rates at time scales beyond the 40 k.y. limit of radiocarbon dating.

Soil development in piedmont sediment and the shape of nuclide depth profiles derived from soil-pit samples depend on both the deposition rate and the length of time since deposition (Phillips et al., 1998; Birkeland, 1999; Nichols et al., 2002, 2005b). For example, cummulated soils (overthickened, homogeneously weathered soil profiles) represent periods of steady, relatively slow deposition (Birkeland, 1999). Such slow deposition yields nuclide concentrations that increase with depth. Conversely, packages of sediment with no evidence of pedogenesis suggest well-mixed soils or relatively rapid sediment deposition characterized by uniform nuclide concentrations with depth. Sediment that was deposited rapidly but has been stable since deposition will exhibit both soil development that is representative of the age of the deposit as well as nuclide concentrations that decrease with depth. However, many desert surfaces have complex histories of deposition, erosion, and stability. Buried soils represent a paleo-ground surface, where the degree of soil development is representative of the length of surface stability before burial. Often, these buried soils are truncated, as evidenced by missing horizons or sharp irregular boundaries, providing evidence of some erosion prior to burial. A model of the \(^{10}\)Be depth profile, set in the context of soil development, can constrain near-surface depositional histories.

The Castle Dome Mountain piedmont has multiple surfaces (Fig. 3A; Lashlee et al., 1999). The lowest surface (Qf4) corresponds to the active ephemeral channels; the highest surface (Qf1) has the best-developed and most darkly varnished pavements, an indicator of landscape stability. Soils data, from a pit dug into the Qf2 surface, suggest that the surface is between 12 and 70 ka based on a correlation to the soil development of the nearby Whipple Mountain piedmont (Lashlee et al., 1999). Two buried soils at depths of 98 cm and 165 cm in the pit each suggest a period of stability and shallow erosion before the next episode of deposition (Fig. 3B). The data, however, do not show significant changes in nuclide concentration in sediment above and below these depositional unconformities. Rather, the nuclide data are uniform from the surface to 50 cm and then step to lower but uniform nuclide concentrations from 50 to 165 cm. The bottom of the soil pit shows increasing nuclide concentrations from 165 to 200 cm.

An interpretative model constrains both the ages and the rates of piedmont processes (Nichols et al., 2005b). We use a numerical solution, optimized by Monte Carlo simulation of normally distributed nuclide concentrations for each sample, to estimate the mean and standard deviation of each period of stability, as recognized by buried soils (Nichols et al., 2005b). We also date each period of deposition and calculate average aggradation rates. Starting at the bottom of the soil pit, sediment was deposited at a rate of 17 ± 4 mm/k.y. for ~19 k.y. from 70.5 to 51.5 ka. At ca. 51.5 ka, the surface was stable for ~17.5 ± 3.5 k.y., producing the Btkb2 soil horizon from 165 to 200 cm depth. At ca. 34 ka, deposition at a rate of 135 ± 60 mm/k.y. began, likely caused by erosion and incorporation of sediment up-gradient of the soil pit location. Such reworking, common in piedmont soils of the Desert Southwest, would also cause the higher nuclide inheritance values required for the model fit. At ca. 29 ka, the surface was stable for at least 6.7 ± 2.8 k.y., depending on the assumed amount of soil erosion, forming the Btkb1 and Ck1b1 soils at 98 to 165 cm. Slow aggradation, at a rate of 21 ± 6 mm/k.y., occurred from ca. 22.5 ka to...
ca. 9.9 ka. At ca. 9.9 ka, rapid deposition of 70 cm of sediment with high ^{10}Be activity suggests derivation from a near-surface source. Over the past 9.9 ± 2.6 k.y., the surface has aggraded 8 cm from dust accumulation.

Our numerical model constrains the ages and rates of piedmont processes that are within the 12–70 ka soils-based age estimated by Lashlee et al. (1999). The model suggests three periods of stability (present to ca. 9.9 ka, 22.5–29 ka, and 34–51.5 ka) separated by periods of slow aggradation (135 and 17 mm/k.y.), and instantaneous deposition of the top 70 cm of sediment. Deposition from ca. 70 ka to ca. 50 ka agrees with many dated depositional events in the Southwest (Gosse et al., 2004; Anders et al., 2005; Nichols et al., 2005b). The pulse of sediment at the Pleistocene–Holocene transition is consistent with other depositional events identified elsewhere and with geomorphic models (Bull, 1991; McDonald et al., 2003). The periods of deposition and stability between ca. 10 ka and 50 ka vary from being in phase with some data to being out of phase with other data (Anders et al., 2005). Such asynchrony may result from lags induced by changing basin processes or from differing propagation rates of base-level change. In any case, cosmogenic nuclide depth profile data, teamed with soil development analysis, offer an improved understanding of piedmont surface processes, soil ages, and piedmont history. The use of nuclide depth profiles allows for quantification of past surface processes and histories, supplementing the information available from boulders cropping out at the surface.

Case 3—Dating Desert Landslides: The Blackhawk, California

Sometime in the past, a thundering avalanche of rock peeled off Blackhawk Mountain above the Mojave Desert and came crashing down to the valley bottom, leaving lobes of pulverized rock studded with boulders (Shreve, 1968, 1987; Stout, 1977). The Blackhawk slide is not alone; large slides have affected other parts of the Mojave Desert (Bishop, 1997). The exact timing and cause of these events is unknown. Some suggest an increase in precipitation is to blame (Stout, 1977); however, seismic shaking can trigger large landslides (Philip and Ritz, 1999). Accurate and precise dating is needed to better understand the timing, and thus perhaps the triggers, such as dated large earthquakes, of these megaslides.

Until recently, the only age control for the Blackhawk landslide was radiocarbon dating of freshwater gastropod and pelecypod shells found in the sediments of a small, ephemeral pond on the landslide’s surface: 17,400 ± 550 ^{14}C yr B.P. (Stout, 1975, 1977). This age is problematic for two reasons. The pond is younger than the slide; thus, the age is a stratigraphic minimum. However, since the pond developed on carbonate rocks that may have added ^{14}C-free carbon to the pond water, the date may be too old. With such ambiguity in the ^{14}C dating, the Blackhawk would seem to be an excellent site for applying cosmogenic nuclides as a dating tool; therefore, Stone et al. (1995) collected and analyzed samples of limestone for ^{36}Cl, and we collected samples from gneissic and sandstone boulders and analyzed them for ^{10}Be and ^{26}Al. Stone et al. (1995) concluded that the ^{36}Cl data were ambiguous and difficult to interpret, with apparent ages between 12 and 44 ka.

Our results are similarly equivocal and point out limitations in cosmogenic-nuclide dating.

We sampled five boulders to date the Blackhawk landslide (Fig. 4A): a 1.5-m-high quartz-rich gneissic boulder (BH-3) located on the left levee side slope facing the debris zone (Fig. 4B). A. Landsat 7 image (bands 7, 4, 2) of the Blackhawk landslide debris (dark gray) with sample locations. B. Granitic boulder BH-3, located on the side of the levee. There is little evidence of sediment erosion or deposition; thus, the slope is a surface of transport. C. Three granitic boulders (BH-4, BH-5, and BH-6) are near the levee crest, suggesting little chance of burial after initial exposure. D. Varnished sandstone boulder (BH-7) located at the toe of the landslide debris.
The amount of 10Be and 26Al varies from sample to sample. Because the concentrations of 10Be and 26Al are well correlated (Data Repository Table DR3 [see footnote 1]), we quote two-isotope, average ages. The three boulders near the levee crest have low amounts of 10Be and 26Al and suggest a young age (6.4–7.7 ka; $n = 3$), whereas the boulder at the toe of the landslide and the side slope boulder contain higher concentrations of nuclides, which suggest older ages (24.1 ± 3.7 ka and 30.9 ± 5.1 ka, respectively; Table DR3).

These data suggest that cosmogenic-nuclide dating is not straightforward for the Blackhawk landslide and that the sampled boulders have not had the same exposure history. The lightly dosed levee boulders could initially have been buried in the levee and later exhumed, a scenario that would result in an age underestimate. Conversely, the boulder at the toe of the landslide and the side-slope boulder could have had previous cosmic-ray exposure, resulting in nuclide inheritance and an age overestimate (Briner and Swanson, 1998). If we assume that the nuclide concentration in levee-crest boulders represents a two-stage history (initial burial followed by exhumation and exposure), we can model a range of landslide ages. By extrapolating the levee slopes to a peak, a maximum of 9.5 m of levee crest erosion could have occurred, based on measured nuclide concentrations.

If we use erosion rates of moraines from the eastern side of the Sierra Nevada (Hallet and Putkonen, 1994)—even though such rates may not represent the erosion rates of the Blackhawk landslide debris very well—and model the depth of boulder burial between the surface and 9.5 m, we can model deposition ages between 6.4 and 31 ka. Regardless of the landslide debris erosion rates, the nuclide data do not constrain the age of the landslide any more precisely than to the late Pleistocene. The resulting age ambiguity precludes investigation into possible landslide timing and causes of failure.

The Blackhawk slide highlights two problems inherent to dating landforms: nuclide inheritance and landform erosion or modification after deposition. Boulders exposed near Earth’s surface before being transported to a new location carry nuclides from prior periods of cosmic-ray exposure. Thus, a boulder’s model age represents total exposure time, not the age of the sampled landform. Such inherited nuclides have proven to complicate the interpretation of cosmogenic data from moraine boulders (Putkonen, 2003), lake-shoreline clasts (Trull et al., 1991; Matmon et al., 2003), striated bedrock (Colgan et al., 2002), and alluvial fan clasts and boulders (e.g., Liu et al., 1996; Zehfuss et al., 2001; Matmon et al., 2005). If one is fortunate enough to avoid, or account for, nuclide inheritance, then exhumation of boulders through landform erosion and/or the loss of mass from boulder surfaces complicates the interpretation of boulder ages (Bierman and Gillespie, 1991; Hallet and Putkonen, 1994; Zimmerman et al., 1994; Putkonen, 2003). Therefore, predepositional exposure and post-depositional surface modification are fundamental limits on the accuracy of cosmogenically determined landform ages.

OTHER RECENT APPLICATIONS

The power of cosmogenic nuclides as a tool for understanding desert systems is just beginning to be realized. In addition to dating fan surfaces (Liu et al., 1996; Phillips et al., 1998), quantifying erosion rates (Bierman and Caffee, 2001, 2002), and determining burial ages (Granger and Smith, 2000), cosmogenic nuclides can be used as sediment tracers (Clapp et al., 2001, 2002, Matmon et al., 2006), allowing the construction of sediment budgets (Nichols et al., 2005a). Such budgets can be robust quantitative descriptors of desert systems, addressing rates of change, forming a framework for rational landscape management, and providing the means to test long-standing conceptual models of landscape behavior in arid regions (Bierman and Nichols, 2004).

Recently, the rich history contained in the sediments of long piedmonts has been deciphered using 10Be (Bierman et al., 1995; Liu et al., 1996; Zehfuss et al., 2001; Phillips, 2003; Matmon et al., 2005). Sediment amalgamation techniques provide cost- and time-effective means to address the spatial variability in 10Be concentration and thus describe the behavior of the piedmont sediment transport system as a whole (Nichols et al., 2002, 2005b). Cosmogenic data allow calculation of long-term average sediment velocities and fluxes on low-gradient piedmonts. The average sediment grain on a piedmont moves a few decimeters to meters per year, depending on the geomorphic setting (Nichols et al., 2005a). These data provide an important land-management tool, essentially a natural benchmark against which to measure human-induced rates of change as development sweeps across the Desert Southwest.

One way to address the role of tectonics, lithology, and climate change on the rate and distribution of geomorphic process is to measure erosion over space and through time. Bierman et al. (2005) quantified the spatial variability of subbasin erosion rates and constrained the average erosion rate of the 14,225 km2 Rio Puerco basin to ~100 m/m.y. 10Be concentration, and thus erosion rates, are more variable in smaller headwater basins (98% standard deviation [s.d.]; $n = 16$, $\mu = 392$ km2) than in larger downstream basins (53% s.d.; $n = 21$, $\mu = 5440$ km2), because stream flows homogenize sediment with different cosmic-ray exposure histories and erosion histories. As predicted by numerous geomorphologic studies (e.g., Bull, 1991), Bierman et al. (2005) found that erosion rates are best correlated to vegetation, precipitation, and rock erodibility.

Erosion rates over time can also be measured. Using a flight of well-preserved fluvial terraces, Schaller et al. (2004) measured paleo-erosion rates of the humid Meuse River catchment. By dating the terraces and back-calculating the nuclide inventory during deposition, they were able to determine paleo-erosion rates. Similarly, Bierman et al. (2005) measured 10Be in a 6-m radiocarbon-dated section of Rio Puerco sediment deposited over >1000 yr; the similarity of 10Be concentration among the 15 samples indicated that average cosmic-ray dosing, and thus the basin-scale erosion rate, did not change substantially over the millennial time scale on this arid-region river.

These are only a few examples of how cosmogenic nuclides have advanced our understanding of desert systems and of
how using cosmogenic nuclide dating in conjunction with methods, such as thermochronology and luminescence dating, will enable geomorphologists to more thoroughly decipher the detailed history of desert landscape change (House et al., 2001; Lancaster and Tchakerian, 2003). These new data provide quantitative estimates of rates and dates, an important requirement for testing the validity of long-standing models of desert processes/response, such as those linking aggradation and incision with climate and tectonics (Ball, 1991).

ACKNOWLEDGMENTS

Discussions with B. Harrison, Y. Enzel, M. Eppes, E. McDonald, M. Pavich, S. Wells, K. Whipple, D. Clark, L. Persico, A. Matmon, and L. McFadden helped shape our thinking about desert systems. D. Elmore, C. Massey, and L. Persico assisted with sampling and analysis. Edits by M. Eppes, A. Matmon, G. Ross, and B. Harrison improved earlier versions of the manuscript. Funding for analyses and writing provided by the Army Research Office and U.S. Department of Defense grants DAAD19-03-1-0205 and DAAD19990143, National Science Foundation grant EAR-9956261, the J. Hoover Mackin Award, and the Jonathan O. Davis Award.

REFERENCES CITED

Early Registration Deadline: 18 September 2006
Cancellation Deadline: 25 September 2006
Register online at www.geosociety.org/meetings/2006/reg.htm.

If you have questions about the field trips, please contact the trip leader or Mollie VanOtterloo at GSA Headquarters, +1-303-357-1060, mvannotterloo@geosociety.org. Complete trip descriptions and registration details are in the June issue of GSA Today and are posted at www.geosociety.org/meetings/2006/fieldTrips.htm. All trips begin and end at the Pennsylvania Convention Center in Philadelphia unless otherwise indicated. Meals and lodging are noted by the following: B—breakfast, L—lunch, R—refreshments, D—dinner, ON—overnight lodging.

New: Click on your Field Trip Itinerary!
Once you have received confirmation of your field trip registration from GSA, you can go to www.geosociety.org/2006/trip_logon.asp and use the ID number from your confirmation or your e-mail address to access the trips that you have registered for and fill out your individual information sheet to submit back to GSA headquarters.

PREMEETING

1. Along-Strike Changes in the Architecture of a Fold-Thrust Belt: An Example from the Hudson Valley, New York [401]

2. Behind the Scenes at the American Philosophical Society, the Library Company, and the Academy of Natural Sciences: Research Collections in the History of Geology and Paleontology [402]

3. Buried Holocene Streams and Legacy Sediment: Late Pleistocene to Historical Changes in Stream Form and Process and Implications for Stream Restoration, Mid-Atlantic Piedmont Region [403]

4. Coastal Hydrology and Processes of Atlantic Barrier Islands [404]

5. Effects of Metasomatism and Fusion of Host Rock on the Chemistry of Early Jurassic Palisades Diabase in the Newark Basin [405]

6. Journey into Anthracite [406]

7. Lacustrine Cyclicity and the Triassic-Jurassic Transition [407]

8. Late Pleistocene to Modern Lacustrine Processes and Paleoclimatic History in the Finger Lakes, New York [408]

9. New Insights to an Old Fold-Thrust Belt [409]
Fri.–Sat., 20–21 Oct. Steven Wojtal, Dept. of Geology, Oberlin College, 52 W. Lorain St., Oberlin, OH 44074-1044, USA, +1-440-775-8352, fax +1-440-775-8038, steven.wojtal@oberlin.edu; Patricia Campbell; Tom Anderson. Max.: 30; min.: 15. Cost: US$185 (2L, 2R, ON, bus).

11. Prehistoric and Urban Landscapes of the Middle Atlantic Region: Geoarchaeological Perspectives [411]
Field Trips

12. Refining the Metamorphic and Tectonic History of the Southeastern Pennsylvania Piedmont: Recent Results from Monazite and Zircon Geochronology and Accessory-Phase Thermometry [412]

13. Rivers, Glaciers, Landscape Evolution, and Active Tectonics of the Central Appalachians, Pennsylvania and Maryland [413]
Wed.–Sat., 18–21 Oct. Co-sponsored by GSA Quaternary Geology and Geomorphology Division. Frank Pazzaglia, Dept. of Earth & Environmental Sciences, Lehigh University, 31 Williams Dr., Bethlehem, PA 18015-3126, USA, +1-610-758-3667, fax +1-610-838-2344, fp3@lehigh.edu; Duane Braun; Noel Potter; Dru Germanoski; Milan Pavich; Paul Bierman; Dorothy Merritts; Allen Gellis. Max.: 30; min.: 15. Cost: US$375 (3B, 3L, 2D, 3On, vans). Begins in Washington, D.C. Participants will be advised on arrival options.

14. Rodinian Collisional and Escape Tectonics in the Hudson Highlands, New York [414]

15. Stratigraphy and Paleontology of the Chesapeake Group [415]

17. Taconic Orogeny in the Susquehanna Shelf and Foreland [417]
Fri.–Sat., 20–21 Oct. Don Wise, Dept. of Geosciences, University of Massachusetts, Amherst, MA 01003, USA, +1-413-545-0482, fax +1-717-291-4186, dwise@geo.umass.edu; Bob Ganis. Max.: 45; min.: 20. Cost: US$199 (B, 2L, D, R, ON, bus).

18. Tectonic History of the Blue Ridge, North-Central Virginia [418]

19. The Great Centralia Mine Fire: A Natural Laboratory for the Study of Coal Fires [419]

DURING THE MEETING

20. 135 Million Years of History in Southwestern Philadelphia [420]

22. Erosion and the Hickory Run Boulder Field—1st Annual Kirk Bryan Field Seminar [422]
Tues., 24 Oct. Co-sponsored by GSA Quaternary Geology and Geomorphology Division. Frank Pazzaglia, Dept. of Earth & Environmental Sciences, Lehigh University, 31 Williams Dr., Bethlehem, PA 18015-3126, USA, +1-610-758-3667, fax +1-610-838-2344, fp3@lehigh.edu; Paul Nierman; Milan Pavich; Dorothy Merritts. Max.: 60; min.: 20. Cost: US$59 (L, vans).

Annual Meeting Sponsor

SUBARU

Title Sponsor of the 2006 GSA Annual Meeting.
Field Trips

25. A Tour of the Peach Bottom Slate—Once the Best Building Slate in the World [425]

26. Arsenic in Groundwater in the Newark Basin [426]
Thurs., 26 Oct. cosponsored by GSA Sedimentary Geology Division; GSA Geology and Health Division. Mike Serfes, New Jersey Geological Survey, P.O. Box 427, trenton, nJ 08625-0427, USA, +1-609-984-6587, mike.serfes@dep.state.nj.us; Steve Spayd; Paul Olsen. Max.: 40; min.: 10. Cost: US$59 (L, R, bus).

27. Central Appalachian Transect along the Potomac River Corridor [427]

29. From the K-T to the Coast: Paleontology, Stratigraphy, and Coastal Sedimentation from the Late Cretaceous through the Quaternary, Southern New Jersey [429]

30. Geologic, Hydrogeologic, and Biogeochemical Controls on Natural and Enhanced Degradation of Industrial Solvents in Fractured Rocks [430]

31. History and Geology of Gettysburg National Battlefield [431]

32. Karst and Environmental Hydrology in Central Pennsylvania [432]

33. Paleontology and Paleoenvironments of the Upper Devonian Catskill Formation in North-Central Pennsylvania [433]

34. Prehistoric Quarries and Early Mines in the New York–New Jersey–Pennsylvania Tri-State Metropolitan Area [434]

GSA-SPONSORED SHORT COURSES

GSA-sponsored professional development short courses will be held immediately before and during the annual meeting and are open to members and nonmembers. If you register only for a short course, you must pay a US$40 nonregistrant fee in addition to the course fee. This fee may be applied toward meeting registration if you decide to attend the meeting. Excepted from this requirement are GSA K–12 Teacher Members, who need only pay the short course fee if not attending the entire meeting. Early registration is recommended; standard registration (after 18 Sept.) is an additional US$30. A special Subaru of America grant is available to Pennsylvania graduate students and two-year college faculty that will cover half of the meeting registration fee. Go to www.geosociety.org/meetings/2006/rSubaru.htm for more information on this grant.

Cancellation Deadline: 19 Sept. 2006

Continuing Education Unit (CEU) Service

All professional development courses and workshops sponsored by GSA offer CEUs. A CEU is made up of 10 contact hours of participation in an organized continuing education experience under responsible sponsorship, capable direction, and qualified instruction. A contact hour is defined as a typical 60-minute classroom instructional session or its equivalent; ten instructional hours are required for one CEU.

1. Beyond the Content: Teaching Scientific and Citizenship Literacies in the Geosciences [501]
Sat., 21 Oct., 9 a.m.–5 p.m. Cosponsored by GSA Geoscience Education Division

Have you, as an earth science instructor, been restricted in the complexity of the course material you can present by students’ limited basic skills? This workshop focuses on successful and innovative techniques for incorporating the review of scientific and citizenship literacy into introductory and junior-level university earth science courses, without compromising content.

Faculty: Erin Campbell-Stone, Ph.D.; James D. Myers, Ph.D.; both with the Department of Geology and Geophysics, University of Wyoming. Limit: 60. Fee: US$200; includes course materials and lunch. CEU: 0.7.

2. Using GPS Data to Study Crustal Deformation, Earthquakes, and Volcanism: A Workshop for College Faculty [502]
Sun., 22 Oct., 7:30 a.m.–12:30 p.m.
Cosponsored by GSA Geoscience Education Division

This course is geared toward faculty at two- and four-year institutions who teach general education or introductory or lower level geoscience courses in which plate tectonics is a topic. Faculty will be introduced to place-based, data-rich educational materials about global positioning systems (GPS) and plate tectonics to use in their classrooms, receive an introduction to high-precision GPS, and have the opportunity to discuss pedagogical strategies for classroom implementation. Anticipated topics include slow earthquakes in Cascadia and monitoring volcano deformation. Although individuals with GPS experience are welcome, knowledge of GPS is not required. Participants should bring a laptop computer with wireless Internet capability.

Faculty: Susan Eriksson, Ph.D.; Becca Walker; David Phillips, Ph.D.; all with UNAVCO. Limit: 20. Fee: US$160; includes course materials and refreshments. CEU: 0.5.

3. Digital Terrain Mapping [503]
Sat., 21 Oct., 8 a.m.–5 p.m.
Cosponsored by GSA Engineering Geology Division; GSA Quaternary Geology and Geomorphology Division

Hands-on introduction to digital elevation models (DEMs), triangulated irregular networks (TINs), and xyz(i) point clouds to visualize and analyze topography. Conventional, radar, and LIDAR elevation data; geodetic datum and coordinate systems; interpolation; derivative maps; effects of errors; image processing tools; and geologic process models. No previous terrain modeling experience required. Participants are asked to bring a laptop computer (Macintosh OS X, Windows, Linux) with wireless capabilities and pre-installed free software (instructions provided) to participate in the computer exercises.

4. Enhanced Seismology Education for Undergraduates [504]
Sat., 21 Oct., 8 a.m.–5 p.m.
Cosponsored by GSA Geoscience Education Division

This workshop is intended for faculty at 2- and 4-year colleges and universities who wish to learn both new seismology content and instructional strategies to effectively convey content to students. Seismology topics will include “hot topics,” causes of earthquakes, propagation of seismic waves, statistics and data, Earth’s structure, and hazards. Educational topics will feature instructional sequences, student conceptions in geoscience, and constructivist learning theory. Effective science instruction will be modeled by emphasizing hands-on and inquiry-based activities to deliver content to learners.

Faculty: Jeff Barker, Ph.D., Binghamton University; Michael Hubenthal, IRIS Consortium; Tom Owens, Ph.D., University of South Carolina; John Taber, Ph.D., IRIS Consortium. Limit: 25. Fee: US$15; includes course materials and lunch. CEU: 0.8.

5. Scientific Inquiry in the K–16 Classroom: What Every Scientist Should Know about Effective Science Education [505]
Sat., 21 Oct., 8 a.m.–noon
Cosponsored by GSA Geoscience Education Division

This course provides research-based and hands-on experiences with scientific inquiry in school classrooms. Inquiry is both a content area—the understanding of how science works that every student needs to become a science-literate citizen—and a set of teaching and learning strategies that replicates the
discovery process of science in teaching students the big ideas of science. This course is designed for scientists and science educators at all levels who wish to contribute to education as volunteers or in professional capacities as part of research-related outreach programs or to meet the “broader impacts” requirements of their research funders.

Facility: Sandra Laursen, Ph.D., Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colo.; Lesley Smith, Ph.D., CIRES, University of Colorado, Boulder, Colo.; Carol Schott, M.A., Science Discovery, University of Colorado, Boulder, Colo. Limit: 50. Fee: US$145; includes course materials and refreshments. CEU: 0.4.

6. Using EarthEdOnline: Online Delivery System for Data-Rich Inquiry Education [506]
Sat., 21 Oct., 8 a.m.–5 p.m.
Cosperson by GSA Geoscience Education Division
This course provides hands-on training in the use of the “EarthEdOnline” software package to deliver data-rich inquiry activities to learners at a wide range of education levels. It will cover the goals and issues involved with presenting inquiry activities, scaffolding of activities to ensure success, online peer review, and configuring EarthEdOnline software. Participants should bring a laptop computer with wireless capability.

Facility: William Prothero, University of California (emeritus), Santa Barbara, Calif.; Ph.D., University of California, San Diego, Calif.; Sabina Thomas, Baldwin Wallace College, Berea, Ohio; Ph.D., Technical University of Berlin. Limit: 20. Fee: US$150; includes course materials and refreshments. CEU: 0.8.

7. Education Research: An In-Depth Look at Qualitative Methods [507]
Sat., 21 Oct., 1 p.m.–5 p.m.
Cosperson by GSA Geoscience Education Division
Participants will learn about qualitative data collection and analysis methods used in geoscience education research. Qualitative research involves the collection and analysis of data from sources such as interviews, classroom observations, and student writings and drawings. It is the building block of and a complement to quantitative education research. Case studies, demonstrations, and hands-on activities will introduce participants to qualitative education research. This workshop is geared for college and K–12 educators, researchers, and students who are conducting or planning education research.

Facility: Julie Sexton, doctoral fellow, National Science Foundation Center for Learning and Teaching in the West, Colorado State University, Fort Collins, Colo., ju.sexton@colostate.edu. Limit: 55. Fee $140; includes course materials. CEU: 0.4.

8. Using Online Igneous Geochemical Databases for Research and Teaching [508]
Sat., 21 Oct., 1 p.m.–5:30 p.m.
Cosperson by GSA Geoscience Education Division
This course will give students, teachers, and researchers training on geochemical database systems for igneous rocks. The course will include a variety of exercises and short lectures to explore and explain how these systems work. The course is intended to be a blend of education opportunities in the use of geochemical databases and background knowledge about geoinformatics, relational databases, and data reporting. A general knowledge of petrology is required. Participants should bring a laptop computer with wireless capability (if unable, please contact instructor Walker at jdwalker@ku.edu).

Facility: Kerstin Lehnert, Ph.D., Lamont-Doherty Earth Observatory of Columbia University, Palisades, N.Y.; Kent Ratajeski, Ph.D., Department of Geosciences, University of West Georgia, Carrollton, Ga.; Doug Walker, Ph.D., Department of Geology, University of Kansas, Lawrence, Kans. Limit: 55. Fee: US$25; includes course materials and refreshments. CEU: 0.4.

Fri.–Sat., 20–21 Oct., 8 a.m.–5 p.m.

This short course will introduce the use of GIS in geology-related applications through brief lectures and hands-on computer exercises. Concepts in creating a GIS project in geology will be discussed, including creation of data (global position systems, remote sensing, digitizing), conversion of data, metadata, different data formats (vector and raster) and accessing data from several sources (tables, shapefiles, coverages, computer-aided drafting, geodatabases, and grids). Participants do not need to have experience with ArcGIS, but familiarity with Windows OS is beneficial.

Facility: Ann B. Johnson, Higher Education Manager, Environmental Systems Research Institute, Redlands, Calif.; Ph.D., California State University; Willy Lunch, Instructor, Environmental Systems Research Institute, Denver, Colo.; M.S., University of Utah. Limit: 24. Fee: US$299; includes course manual and lunch. CEU: 1.6.

K–12 SHORT COURSE

GSA K–12 Teacher Members who wish to attend only the GSA short courses are not required to pay the annual meeting registration fee; for all others, annual meeting registration as well as payment of the short course fee are required for participation. Annual Meeting registration for K–12 professionals or for others who will participate only in this short course is US$40 if registered by 18 Sept. and US$45 after 18 Sept.

1. Using Authentic Scientific Ocean Drilling Data for Earth Systems Science Inquiry [601]
Sun., 22 Oct., 9 a.m.–5 p.m.
Cosperson by Joint Oceanographic Institutions; GSA Geoscience Education Division
Through inquiry exercises, educators will discover how accessible and applicable scientific ocean drilling results are to the undergraduate and secondary earth systems science curricula they teach. Published data from 40 years of scientific ocean drilling expeditions can support the teaching of plate tectonics, deep time and age determination, and the history of global climate change. This is an onshore extension of the recent Joint Oceanographic Institutions (JOI) “School of Rock” Expedition (www.joilearning.org/schoolofrock).

Facility: Kristen St. John, Ph.D., James Madison University, Harrisonburg, Virginia; Mark Leckie, Ph.D., University of Massachusetts, Amherst, Massachusetts; Leslie Peart, JOI, Washington, DC. Limit: 30. Fee: US$25; includes course materials and lunch.
Short Courses

OTHER COURSES

Registration and information can be obtained from the contact person listed.

Core Analysis of Lake Sediments
Sat., 21 Oct., 11 a.m.–5 p.m. GSA Limnogeology Division Workshop. Sponsored by ExxonMobil.
Core analysis and comparison of modern lake sediments and fossil lake rock sequences will shed light on sedimentation processes, climatic effects, and the preservation potential of fossils and structures through time and space. Please bring posters and/or cores describing your lake sediments. Posters can also be submitted for the poster session held during the annual meeting. For more information, contact Elizabeth Gierlowski-Kordesch, gierlows@ohio.edu.

Sequence Stratigraphy for Graduate Students
Fri.–Sat., 20–21 Oct., 8 a.m.–5 p.m. Cosponsored by ExxonMobil; BP.
This free two-day short course is designed to teach graduate students the principles, concepts, and methods of sequence stratigraphy. Sequence stratigraphy is a methodology that uses stratal surfaces to subdivide the stratigraphic record. This methodology allows for the identification of coeval facies, documents the time-transgressive nature of classic lithostratigraphic units, and provides geoscientists with an additional way to analyze and subdivide the stratigraphic record. Using exercises that utilize outcrop, core, well-log, and seismic data, the course provides hands-on experience in learning sequence stratigraphy. Exercises include classic case studies from which many sequence stratigraphic concepts were originally developed. Instructors: Art Donovan Ph.D. (Colorado School of Mines), BP (British Petroleum); Kirt Campion Ph.D., ExxonMobil Upstream Research Co. Limit: 40. No fee. Preregistration required. For information or to register, please contact art.donovan@bp.com.

Geochronology: Emerging Opportunities
Sat., 21 Oct., 8 a.m.–5 p.m. Sponsored by The Paleontological Society.
Study of the history of life is critically dependent on knowledge of the precise times and sequence of events. Accurate estimates of time depend on the quality of radiometric ages and the manner in which they are integrated in stratigraphic correlation and development of time scales. The impetus for this short course came from the work of a 2003 Earthtime workshop. The short course will focus on new windows on the history of life that have been opened by collaboration between paleontologists and geochronologists in estimating geologic ages. Speakers who have agreed to participate include Sam Bowring, Doug Erwin, George Gehring, Felix Gradstein, Brent Miller, Heiko Palike, Troy Rasbury, Paul Renne, and Peter Sadler. Organizers: Thomas Olszewski, Dept. of Geology and Geophysics, Texas A&M University, 3115 TAMU, College Station, TX 77843-3115, USA, +1-979-845-2465, fax +1-979-845-6162, tomo@geo.tamu.edu; Warren D. Huff, Dept. of Geology, University of Cincinnati, P.O. Box 0013, Cincinnati, OH 45221-0013, USA, +1-513-556-3731, fax: +1-513-556-6931, warren.huff@uc.edu.
Minority Student Travel Grants

Application Deadline: 7 September 2006

The GSA Minorities and Women in the Geosciences Committee and the GSA Foundation announce the availability of student travel grant funds for one or more eligible minority students or students with disabilities to attend the GSA Annual Meeting in Philadelphia, Pennsylvania, on 22–25 October 2006.

The primary goal of this travel scholarship is to encourage the visibility of minorities in the geosciences at national meetings. Successful candidate(s) will receive up to US$1,500, to include roundtrip airfare, hotel accommodations, meeting registration, meals, and a 2007 GSA student membership. Undergraduate and graduate students may apply by sending or e-mailing a letter that includes (1) their contact information, student status, and institution; (2) a personal statement regarding how attending the annual meeting will personally benefit them and their future geoscience career; and (3) the name and contact information of the student’s departmental advisor. Applicants must be full-time students (undergraduate or graduate) enrolled in an accredited university or college for fall 2006 and majoring in geology or earth science. Preference will be given to students involved in geological research or who will be presenting papers or posters either as primary or secondary authors. GSA membership is not an eligibility requirement.

Send your letter of application (limit two pages) to Deborah Nelson, GSA, P.O. Box 9140, Boulder, CO 80301, USA, dnelson@geosociety.org, by 7 September 2006.

GSA Section Travel Grants

The GSA Foundation has made $4,500 in grants available to each of the six GSA Sections. The money, when combined with equal funds from the Sections, is used to help GSA undergraduate Student Associates and graduate Student Members travel to GSA meetings. For information and deadlines, go to www.geosociety.org/sectdiv/sections.htm or contact your Section secretary.

GSA Student Travel Fund

GSA is pleased to offer assistance to member undergraduate and graduate students to help cover some of the costs associated with attending the GSA Annual Meeting. A fund has been set up within the GSA Foundation for attendee contributions, and GSA and the Foundation will each contribute US$1,000 for the 2006 Philadelphia Annual Meeting. The number and amount of awards will be solely based on contributions received; 100% of the contributions received will go to help fund student travel. For more information or to apply online, go to www.geosociety.org/meetings/2006.

Student Scholarships For Field Trips

As part of the Roy J. Shlemon Meeting Awards Program, GSA’s **Engineering Geology Division** provides funding to graduate and undergraduate students attending GSA field trips. The only criteria are that you must be a student member of the Engineering Geology Division and that you are making satisfactory progress toward your degree. For a detailed description of this program, you can visit http://rock.geosociety.org/egd/index.html and click on “Scholarships.” If you need more information, you can reach Rob Larson at ralarson1@dslextreme.com. **Deadline for applications:** 1 August 2006.

GSA’s **Structural Geology and Tectonics Division** is offering scholarships to Division-affiliated student members for Division-sponsored field trips. Apply in writing, by e-mail, giving your name, institution, class, specialty, poster or talk title, field trip title, and a one-paragraph rationale to Peter Vrolijk, peter.vrolijk@exxonmobil.com. See the Structural Geology and Tectonics Division newsletter for more information.

Student Scholarships For Short Courses

If you are planning to attend any of the GSA-sponsored short courses (p. 15 of this issue), check here first!

- **GSA’s Geoscience Education Division** will subsidize the first five student registrants who are valid division members. The student must pay the full course fee when registering, but will be reimbursed US$50 after the GSA meeting by the Geoscience Education Division.

- **GSA’s Engineering Geology Division** will subsidize the first five student registrants who are valid division members. Students must pay the full course fee when registering, but will be reimbursed US$50 after the GSA meeting by the Engineering Geology Division.

- **GSA’s Quaternary Geology and Geomorphology Division** will subsidize the first five student registrants who are valid division members. Students must pay the full course fee when registering, but will be reimbursed US$50 after the GSA meeting by the Quaternary Geology and Geomorphology Division.

For more information, contact Karlon Blythe, kblythe@geosociety.org.
The following individuals were elected into membership by GSA Council at its April 2006 meeting.

<table>
<thead>
<tr>
<th>Professional Members</th>
<th>New Members: GSA Welcomes You!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alvaro P. Costa</td>
<td>Christian A. Noll</td>
</tr>
<tr>
<td>Gloria J. Cuevas</td>
<td>Yusuke Okazaki</td>
</tr>
<tr>
<td>Gloria Cummins</td>
<td>Bogdan P. Onac</td>
</tr>
<tr>
<td>Claire Currie</td>
<td>Joanna O’Neill</td>
</tr>
<tr>
<td>Gary Curtis</td>
<td>Herwig H. Opdebeck</td>
</tr>
<tr>
<td>Larry A. Damron</td>
<td>Heiko Pálíke</td>
</tr>
<tr>
<td>Timothy C. Dean</td>
<td>Sudhir K. Pandey</td>
</tr>
<tr>
<td>John Delaney</td>
<td>Youngdo Park</td>
</tr>
<tr>
<td>Joseph R. Desloges</td>
<td>Sandra Passchier</td>
</tr>
<tr>
<td>Claudio Di Celma</td>
<td>Kent H. Pearce</td>
</tr>
<tr>
<td>Kang Ding</td>
<td>Sandra L. Perry</td>
</tr>
<tr>
<td>Robert C. Dixon Jr.</td>
<td>Vincent Piazza</td>
</tr>
<tr>
<td>Michael F. Doe</td>
<td>Gheorghe C. Popescu</td>
</tr>
<tr>
<td>Jed Douglas</td>
<td>Panjai Prapaipong</td>
</tr>
<tr>
<td>Lawrence A. Douglas</td>
<td>Tracy M. Quan</td>
</tr>
<tr>
<td>Luz Marina Duarte</td>
<td>Amelia Rai</td>
</tr>
<tr>
<td>Mark P. Dabois</td>
<td>Wayne N. Randall Jr.</td>
</tr>
<tr>
<td>Christopher J. Duffy</td>
<td>Jessica A. Rauchenstein</td>
</tr>
<tr>
<td>Jessica Duke</td>
<td>Ying Fang Reinkefelder</td>
</tr>
<tr>
<td>Robert Dundas</td>
<td>Anne U. Reuther</td>
</tr>
<tr>
<td>David Eberth</td>
<td>Henry N. Rhoden</td>
</tr>
<tr>
<td>John W. Engles</td>
<td>H.S. Richardson</td>
</tr>
<tr>
<td>Steve Erickson</td>
<td>Linda A. Ritterbush</td>
</tr>
<tr>
<td>Gregory M. Erickson</td>
<td>Jon M. Robinson</td>
</tr>
<tr>
<td>Bradley Gene Erskine</td>
<td>Eric E. Roden</td>
</tr>
<tr>
<td>Elena Escalante</td>
<td>Alfredo Rodríguez-Pineda</td>
</tr>
<tr>
<td>Christopher Warren</td>
<td>Kristine Romanik</td>
</tr>
<tr>
<td>Fancher</td>
<td>Jean-Yves Royer</td>
</tr>
<tr>
<td>Michael Farmer</td>
<td>Joan V. Ruderman</td>
</tr>
<tr>
<td>Robert J. Ferguson</td>
<td>Anthony C. Runkel</td>
</tr>
<tr>
<td>Lynn Fielding</td>
<td>Ralph Russell</td>
</tr>
<tr>
<td>Paul E. Filmer</td>
<td>Walid W. Sabbah</td>
</tr>
<tr>
<td>Andrew B. Freed</td>
<td>Hautaka Sakai</td>
</tr>
<tr>
<td>David Jon Furbish</td>
<td>Jesse Michael Langlais</td>
</tr>
<tr>
<td>Galal Ahmed Galaleldin</td>
<td>Johanna Lanter</td>
</tr>
<tr>
<td>Anna Garcia</td>
<td>Mark Lappin</td>
</tr>
<tr>
<td>Ray Garton</td>
<td>Gregory K. Lee</td>
</tr>
<tr>
<td>Maria do Carmo Gastal</td>
<td>Robert W. Leonardson</td>
</tr>
<tr>
<td>Michael A. Geffert</td>
<td>Leo S. Leonhart</td>
</tr>
<tr>
<td>Mark Gettings</td>
<td>Mian Lin</td>
</tr>
<tr>
<td>William Emanuel</td>
<td>William B. Lodder Jr.</td>
</tr>
<tr>
<td>Gottobrio</td>
<td>Michelle M. Lorah</td>
</tr>
<tr>
<td>Dana Lyne Griffith</td>
<td>Krissy L. Lovering</td>
</tr>
<tr>
<td>Neil Griffiths</td>
<td>Jeffrey G. Low</td>
</tr>
<tr>
<td>James A. Hargy</td>
<td>Paul Lucey</td>
</tr>
<tr>
<td>Karen L. Helgers</td>
<td>Alessandro Lugari</td>
</tr>
<tr>
<td>Timothy John Henstock</td>
<td>Michaela A. Mann</td>
</tr>
<tr>
<td></td>
<td>Melissa Anne Mateer</td>
</tr>
<tr>
<td></td>
<td>Julianne McCabe</td>
</tr>
<tr>
<td></td>
<td>Robin John McDowell</td>
</tr>
<tr>
<td></td>
<td>Brian McGlynn</td>
</tr>
<tr>
<td></td>
<td>Tanya S. Meeth</td>
</tr>
<tr>
<td></td>
<td>Dorothy Jane Merritts</td>
</tr>
<tr>
<td></td>
<td>Charles Bruce Minturn III</td>
</tr>
<tr>
<td></td>
<td>Timothy E. Moberg</td>
</tr>
<tr>
<td></td>
<td>Alan Morris</td>
</tr>
<tr>
<td></td>
<td>Steven Newton</td>
</tr>
<tr>
<td></td>
<td>Elena B. Nilsen</td>
</tr>
</tbody>
</table>

K-12 Teacher Members

Lee Amosslee
Freda Antoine
Inez H. Arrigo
Ruth A. Baldwin
Susan Britain
Stephen Budko
Steven T. Bush
John Cavara
Rosanna Cincquegrana
Aldene Cohen
Richard E. Cooper
Eddy Crick
Ruth E. Cruz
Sarah R. Dasher
Dan T. Eddy
Kenneth N. Ekechukwu
Patricia J. Erhard
Brad Ertl
Roman N. Fettig
Larry Joe Ford
Dennis C. Foreman
Will Geiger
Erica L. Glover
Therese M. Goulet
Rob Greenberg
Edward L. Greenebaum
Michael A. Greer
Ann Hampton
Dorothy L. Hellums
Jan S. Hersh
Janet Hubner
Joel Jackel
Raymond J. Janke
Norman Jensen
Leslie K. Jones
David M. Kahn
David S. Kaltenbaugh
Tina M. King
Amanda K. Knapp
Pauline Kola-McVeigh
Blair C. Larsen

John Walton
William B. Ward
Bodo Weber
Bruce S. Wedgeworth
George H. Whitton
David T. Willard
Allan Woodbury
Pete Worcester
Michael W. Worden
Danielle Y. Wyrick
Moriakhi Yasuhara
Edward John Zalislo
Joe A. Zamudio
Zhengwen Zeng
Yong Zhang
Xiaodong Zhou
New Members: GSA Welcomes You!

Diane M. Lasco
Keith F. Laskowski
Daniel Loomis
Sheryl Madden
Jennifer L. Maguire
Linda Martin
Lewis A. Matson
Donna M. Melchior
Jay Melena
Samantha A. Methot
Halle R. Morrison
Karen A. Nagy
Raymond Nance
Mark A. Nethercott
Libby Ouellette
William D. Panscner
Mitchell L. Parsons
Denise A. Payment
Paul Peeders
Yevgeny Pevzner
Beverly A. Pierson
Linda Jean Piraino
Vicki Porto
Tina Ann Potterton
Thomas Roberts
Ashley Robinson
Teresa W. Robinson
Lawrence R. Rose
Felicity Selvoski
Lisa Y. Serfing
Susie Shomo
Daniel T. Smith
Chad D. Snyder
Ruth Starkins
Margaret P. Stehle
Tori R. Stephens
Carol J. Stolz
Sarah A. Stumpf
Ilona L. Sunday
David S. Taylor
Banks Upshaw
Brian P. Usry
Andrew P. Velez
Jennifer M. Vollmer
Michael E. Watts
Gayle C. Weiss
Lise Denise Whitfield
Michele Wills
Deborah Woodlock

Student Members
Khurrum Ahmed
Jason S. Alexander
Nasser M. Al-Ghamdi
Mansour Hashim
Al-Hashim
Stephen P. Allen
Marcia L. Anderson
Tonia G. Arriola

Todd J. Arrowood
Guillaume Backé
Troy D. Baggerman
Sven M. Baier
Heather Bedle
Charles Begeal
Aaron Bell
Adrian Benson
Christopher Bernhardt
John Bershay
Kon Joon Bang
Matthew D. Birck
Mike Blazevic
Laurie Biler
Christy E. Biles
Tom Broadbent
Gordon Robert Magnus
Bromley
Johnathan Brown
W. Lorenz S. Bruechert
Lori Ann Burkert
Susan Bush
William Cain III
Reanna L. Camp
Humberto Carvalaj-Oriz
Giulio Casini
Elizabeth J. Cassel
Burke Cathey
Eric Celebrezze
Kuldip Chaudhary
Chizheng Chen
Gongbi Cheng
Brian A. Clarke
Matthew A. Coble
Elisabeth Cohen
Clinton Colasanti
Laura Craig
Jeff Creamer
William Cutler
Margaret M. Dalthrop
Hunter Anderson Danque
Shamik Das Gupta
John Dennis
Amos A. Desjardins
Aaron J. DesRoches
Sara J. Di Fiori
Scott T. Drew
Daniel Dye
Douglas Edmonds
Eric Gregory Eckdale
Simon Engelhart
Kamil Erkan
James Michael Eros
Susanah Erwin
Diane Escobedo
Vanessa V. Espejel-Garcia
Sarah J. Feakins
Michael N. Feinstein
Allan Gil Salazar Fernandez
Michael Fienen
Burch Fisher
Rebecca S. Franklin
Ovidiu Frantescu
Allison M. Franzeze
Renan Furic
Valerie Gamble
Angela Garcia
Juan Leandro Garcia Massini
Payton Gardner
Chris Garwood
Mark W. Gawecki
Adewole M. Gbadebo
Maria Jane Gehrels
Tony L. Gilman
Stacy C.L. Gohman
Nicholas Robert John Goodwin
Gregory S. Gordon
Drew Gorman-Lewis
Thomas Graf
Joe Green
Maria C. Guedez
Alan F. Halfen
Christopher Hamilton
Michelle Andree Hanson
Sara Hanson-Hedgecock
Jeff R. Havig
Amanda Henck
Celeste N. Herrickson
Rodrigo Hernandez
Trystan Herriott
Eve-Lyn S. Hinckley
Brendan E. Hodge
Amy E. Hofman
Leon E. Hnrcin Jr.
Joel Hubbell
Kyung In Huh
Holmes Hummel
Rebecca L. Hutcheon
Joel D. Hutson
Michael Jacobson
Ryan Jacoby
Paul Jago
Caroline Jaraula
Kelsey G. Jencso
Xiaohui Jin
Kelsey Johnson
Orion Johnson
Katherine Gurley Kahn
J.O. Raven
Diane Kelly
Kimberly Kelsey
Salma Khattan
Wonsuck Kim
Mark S. King
Margaret E. Kinsella
Martin Kocanda

James J. Kocis
Robert T. Konig
Branden J. Kramer
Jason Michael Kruszewski
Reiji Kukihara
Sebastien Laratte
Changyeol Lee
John Lee
Yuyu Lin
Gwen Linde
Durin Lindenholt
Alberto M. López
Lindsay Anne Lowe
Yuehan Lu
Jacob A. Maas
Katherine R. Mackey
Ann Maglio
Yoko Masue
Raquel Mathey
Scott Alexander David McBride
Blaine Mccleskey
Terrence Allen Mccloskey
Neil A. McGlashan
Brandon J. McLean
Scott McLeod
Tessie Menotti
Mary L. Metger
Romain Meyer
Emily Miller
Tracie L. Miller
Frances M. Mitchell
Marilyn Elizabeth Moll
Luis Monsalve
Christopher Muffels
Christopher Robin Neel
Amar Neku
Gabriel James Nelson
Nicholas C. Nelson
Olufunso Sylvester Ogidan
Olugbenga Samuel Ogundare
Tracey M. O’Malley
Erich C. Osterberg
Vincent J. Pacific
Penelope M. Padmore
Penny M. Paololo
Hwa-Suck Park
Josh Parrie
David M. Pearson
Nils Peterson
Jessica Phillips
Christina Plattner
Curtis Paul Plotkin
Theresa Poruznick
Elizabeth A. Powers
Srinath Rajagopalan
Robin L. Reger
Steve E. Rice
Shauna Riedel
Matthew Riederer
Geneviève Robert
Leanne Nicole Roberts
Marla Roberts
Matthew Rogers
Carla Roig Silva
Violeta Romero-Mayén
Christopher I. Roos
Molly J. Rosig
Andrew Roth
Samuel S. Rund
Angela Sanderson
Kerstin Schemmarn
Jens U. Schmieder
Kerri C. Schorzman
Maia Schweizer
Pamela Schwenk
Mindi Sears
Leuan Seidman
Mohammad Shamsudduha
David Shean
Aubrey Mae Shirk
Elizabeth Siedlecki
Giancanio Sileo
Matthew Silver
Sunny B. Simpkins
Shawn R. Slattery
Christina M. Smeaton
Dominic Smith
Joseph P. Smith
Lianna Smith
Marc R. Spencer
John B. Sperry
Gregory Stanish
Rosemary Sarah Stephens
Jamie L. Stephenson
Thomas Stevens
Michael Strane
Joshua Stroup
Sarah June Surles
Ketsela Tadesse
Michael Tarasevich
Maurits R. Thayer
Jessica L. Till
Teagan L. Tomlin
Matthew Totten Jr.
Keith P. Trasko
Laura D. Triplett
Angelica Trujillo
Alejandro Villalobos-Aragon
Nicolas Vinet
Yvette A. Vlack
Daniel M. Wagner
Jonathan R. Wagner
Virginia Walsh
Christopher L. Weaver
Zhibin Wei

AUGUST 2006, GSA TODAY
New Members: GSA Welcomes You!

Student Associates
Samantha Adkins
Robert Mitchell
Anderson Jr.
Cale T. Anger
Allison Arrendale
Jesse Ashbaugh
Jenne Leanne Bailey
Lee Barnett
Jesse Ashbaugh
Robert Mitchell
Samantha Adkins
Jun Zhu

New Members: GSA Welcomes You!

Michael J. louth
David J. loBue
eric t. lindberg
Gwen leslie
chris leonard
christopher A. lee
nicholas legg
rex Mclachlin
George M. McKinney iii

Affiliate Members
Marilyn Austin
Michelle Crepeau
Perry Damian
Brett DeWoody
Denise Dondero
Jack Hidary
Catherine D. Horadam
Larry J. King
Mary Miller
Lyndsey M. Rademaker
Lieb
Craig Stevenson
2006–2007 Congressional Science Fellow
Named: Craig Cooper

Craig Cooper has been named the 2006–2007 GSA–U.S. Geological Survey Congressional Science Fellow. Cooper's research examines how biogeochemical cycles impact metal geochemistry in environmental systems. His publications include articles on metal sulfide geochemistry in shallow marine sediments, the impact of microbial iron reduction on metal geochemistry, linkages between the iron and nitrogen cycles in anaerobic systems, and radionuclide fate and transport in the environment. Cooper believes that research into the geosciences can help society to more efficiently utilize natural resources in ways that minimize the impacts of human industry on the environment, thereby helping to improve our quality of life.

Cooper studied chemistry at Clemson University, working as a student intern at Tennessee Eastman Corporation and later as a research assistant in the Department of Environmental Engineering and Science. After earning his B.S. in 1991, he completed a Ph.D. in oceanography at Texas A&M University (1998). While at Texas A&M, Cooper received a Texas Research Foundation Fellowship and studied the Fe and S cycle in sea grass beds and cold seep communities in addition to his Ph.D. work. He performed postdoctoral work at the School of Public and Environmental Affairs at Indiana University and taught chemistry as a visiting assistant professor in the chemistry department at Indiana University before joining the Idaho National Laboratory (INL) in 2000. Since joining the INL, Cooper has supported a range of projects, including investigations of how vadose zone biogeochemical processes impact 14C, 3H, and uranium transport, the impact of ionic strength cycling on metal and radionuclide sorption to soil minerals, and radionuclide decontamination of building material surfaces.

Cooper believes that his broad, diverse scientific background provides unique insight into the dependence of human society and its economic underpinnings on the sustainable use of natural resources. “As geoscientists, we don’t often think about how our research impacts people—but it does. Developing natural resources generates wealth, but hasty decisions that sacrifice long-term sustainability for short-term profits threaten to leave our children with a poorer life … The future of the geosciences, and our society, requires that we communicate this message more effectively,” said Cooper. Science has become overly politicized, Cooper believes, and he relishes the opportunity to work closely with lawmakers to use science to inform all decisions rather than to advocate a particular policy.

“Energy, water, land use, national security, and climate are all interrelated. We are going to be forced to deal with these issues soon, and the negotiations are going to be contentious. I hope that my experience as a congressional fellow will help strengthen the informative power of the geosciences and enable me to serve society by working at the nexus between science and policy in the years to come.” Cooper considers it a great honor and responsibility to participate in the fellowship program, and plans to return to the Idaho National Laboratory after his fellowship experience.
Call for Geological Papers

GSA Section Meetings

2007

Northeastern Section
12–14 March 2007
University of New Hampshire
Durham, New Hampshire
Abstract Deadline: 5 December 2006
Information: Wally Bothner, University of New Hampshire, Dept. of Earth Sciences, James Hall, 56 College Rd., Durham, NH 03821-3578, USA, +1-603-862-3143, wally.bothner@unh.edu.

Southeastern Section
29–30 March 2007
Hyatt Regency Savannah on the Historic Riverfront
Savannah, Georgia
Abstract Deadline: 12 December 2006
Information: Pranoti Asher, Georgia Southern University, Dept. of Geology and Geography, Statesboro, GA 30460-8149, USA, +1-912-681-0338, pasher@georgiasouthern.edu.

Joint Meeting
North-Central and South-Central Sections
12–13 April 2007
Kansas Memorial Union, University of Kansas
Lawrence, Kansas
Abstract Deadline: 23 January 2007
Information: Greg Ludvigson, +1-785-864-2734, gludvigson@kgs.ku.edu—or—Greg Ohlmacher, +1-785-749-4502, ohlmac@kgs.ku.edu; both at Kansas Geological Survey, University of Kansas, 1930 Constant Ave., Lawrence, Kansas 66047-5317, USA.

Cordilleran Section
4–6 May 2007
Western Washington University
Bellingham, Washington
Abstract Deadline: 6 February 2007
Information: Bernie Houseen, Western Washington University, Dept. of Geology, MS 9080, 516 High St., Bellingham, WA 98225-5946, USA, +1-360-650-6573, bernieh@cc.wwu.edu.

Rocky Mountain Section
7–9 May 2007
Dixie Center
Saint George, Utah
Abstract Deadline: 13 February 2007
Information: Jerry Harris, Dixie State College, Science Building, 225 South 700 East, Saint George, UT 84770-3875, USA, +1-435-652-7758, dinogami@gmail.com.

Looking for QUALIFIED CANDIDATES in the geosciences?
Looking for EMPLOYMENT in the geosciences?

GSA EMPLOYMENT SERVICE CENTER

- A year-round online applicant database
- Job postings
- Interview services at the GSA Annual Meeting in Philadelphia, 22–24 October 2006

130 registered employment service center applicants engaged in more than 315 interviews at last year's GSA Annual Meeting in Salt Lake City!

www.geosociety.org/Employment_Service
Toll free +1-800-472-1988, ext. 1018
GSA FOUNDATION SILENT AUCTION

Soon it will be silent auction time again! We hope you will make it a priority to stop by the Foundation booth in the Exhibit Hall at the Pennsylvania Convention Center on 22–25 October 2006 to participate in our annual silent auction.

Our auction will feature gift certificates for dining and hotels, ski passes, vacation and lodging packages, rock and mineral specimens, wine, jewelry, rare books, and many other items donated by Foundation supporters. So come, place your bids! The holidays will be right around the corner, the Foundation booth is a great place to find those special items and at the same time support the Foundation.

All money will go into the Foundation’s Greatest Needs Fund, which supports such programs as research grants, student travel grants (domestic and international), education and outreach programs, and GSA publications, to name a few.

Come help us make our seventh silent auction a success!

Have An Item for Our Auction?

Items to donate include fossils, mineral specimens, jewelry, rare geologic books or maps, wine, field supplies, and antiques, just to name a few. **Or, do you have a timeshare that you would be willing to donate?** Last year, bidders enthusiastically pursued timeshares from a variety of places around the country.

Your donations are tax deductible based upon the retail value of the donated item, and your name will be listed as the donor on the auction item when displayed in the Foundation booth.

If you don’t have an item, we’d be happy to accept a cash donation. You may mail donations directly to Donna Russell at the GSA Foundation, P.O. Box 9140, Boulder, CO 80301, USA.

THERE’S STILL TIME!
Support GeoScience Day In Philadelphia

If you would like to help support GeoScience Day for minority school children (see the July GSA Today), please check the appropriate box on the coupon below and send your contribution to GSA Foundation, P.O. Box 9140, Boulder, CO 80301, USA. You may also donate online at www.gsafweb.org. Just remember to indicate that your gift is for GeoScience Day.

*Most memorable early geologic experience:
Discovering crystals of orthoclase and quartz in country rocks with the same properties as mega-crystals in Papoose Flat pluton, California, which supported replacement origin for seemingly igneous minerals.*

—Frank W. Dickson

Enclosed is my contribution in the amount of $_____________
Please credit my contribution for the:
☐ Greatest need ☐ Other: ___________________________ Fund
☐ I have named GSA Foundation in my will.
☐ GeoScience Day

PLEASE PRINT

Name

Address

City/State/ZIP

Phone
2006 AGU Fall Meeting

Mark your calendar! The 2006 AGU Fall Meeting provides an opportunity for more than 12,000 researchers, teachers, students, and consultants to present and review the latest issues affecting the Earth, the planets, and their environments in space. This meeting will cover topics in all areas of Earth and space sciences.

Deadline for Abstract Submission:
7 September 2006

Housing and Pre-Registration Deadline
6 November 2006

For complete registration and deadline information, go to www.agu.org/meetings/fm06/.

2007 Joint Assembly

Deadline for Session Proposals:
22 September 2006

The Program Committee is developing a Union-wide science program that will cover topics in all areas of the Earth and space sciences. Located in Acapulco, Mexico, 2007 Joint Assembly is sure to offer exciting sessions and a relaxing atmosphere.

For more information and updates about the meeting, log on to www.agu.org/meetings/ja07/.

For more information visit www.agu.org.
NOTICE of Council Meeting

Meetings of the GSA Council are open to Fellows, Members, and Associates of the Society, who may attend as observers, except during executive sessions. Only councilors and officers may speak to agenda items, except by invitation of the chair.

The next Council meetings will be held at 1 p.m., Saturday, 21 October, and 8 a.m., Wednesday, 25 October, at the 2006 GSA Annual Meeting in Philadelphia.
Pre-publication offer

The Geology of England and Wales (2nd Edition)

Edited by P. J. Brenchley and P. F. Rawson

This second edition of The Geology of England and Wales is considerably expanded from its predecessor, reflecting the increase in our knowledge of the region, and particularly of the offshore areas. Forty specialists have contributed to 18 chapters, which cover a time range from 700 million years ago to 200 million years into the future. A new format places all the chapters in approximately temporal order. Both offshore and economic geology now form an integral part of appropriate chapters.

Most of England and Wales is formed from part of a single terrane, Avalonia, and its pre-Cambrian (Neoproterozoic) history is preserved in patches. However the time intervals from the Cambrian to the present day are well represented in our sequences and the Cambrian, Ordovician, Silurian and Devonian systems were all defined here. William Smith’s map of England and Wales was the world’s first geological map of a country and the British Geological Survey’s copy is reproduced in the introductory chapter. This chapter, by the editors, consists of a broad overview aimed particularly at the non-specialist while guiding the reader towards the appropriate succeeding chapters. The volume concludes with a look at the future, from the short-term effects of climate change and sea-level rise to the position of our region in a possible plate tectonic configuration 200 million years hence.

While the authors have taken a ‘dynamic’ view of the evolution of the area over geological time, they have also ensured that the geological evidence on which the interpretations are based is reviewed thoroughly. Hence the volume provides a valuable resource for both Earth scientists and the broader community.

• September 2006
• 592 pages (approx.)
• Hardback and paperback

• Hardback prices:
 List: £85.00/US$153.00
 GSL: £42.50/US$77.00
 AAPG/SEPM/GSA/RAS/EFG/PESGB/TMS: £51.00/US$92.00

• Paperback prices:
 List: £35.00/US$63.00
 GSL: £27.50/US$50.00
 AAPG/SEPM/GSA/RAS/EFG/PESGB/TMS: £27.50/US$50.00

• Pre-publication paperback offer price: £22.50 per copy
 (if ordered before 31 August 2006 - contact the Sales Department for an order form)
The U.S. Geological Survey (USGS) invites applications for the Mendenhall Postdoctoral Research Fellowship Program for Fiscal Year 2008. The Mendenhall Program provides opportunities to conduct research associated with selected members of the USGS professional staff. Through this Program the USGS will acquire current expertise in science to assist in implementation of the science strategy of its programs. Fiscal Year 2008 begins in October 2007. Opportunities for research are available in a wide range of topics. The fellowships are 2-year appointments. The closing date for applications is 15 November 2006. Applications will start October 2007 or later, depending on funding availability. A description of the program, research opportunities, and the application process are available at http://geology.usgs.gov/postdoc. The U.S. Geological Survey is an equal opportunity employer.

EARLHAM COLLEGE:
TENURE TRACK ASSISTANT PROFESSOR
SURFACE PROCESSES

The Department of Geosciences at Earlham College invites applications for a tenure track position beginning Fall 2007 in the general area of geomorphology/surface processes. Course responsibilities include participation in introductory geoscience and environmental science courses, as well as upper-class courses such as geomorphology, GIS, soil science, field methods, or other upper-level specialties. We expect that the candidate will be interested in helping define an Environmental Geology sub-discipline among their undergraduate study and research. Responsibilities will include teaching at the introductory level, supervising student research projects, and participating in the senior capstone seminar. A Ph.D. is required and previous teaching experience at the undergraduate level is preferred. Women, underrepresented minorities, and Quakers are especially encouraged to apply. Interested candidates should submit curriculum vitae, statements of teaching philosophy, and research interests, along with the full contact information of at least three references to: Dr. Meg Streepey, Department of Geosciences, Earlham College, 801 National Rd. West, Richmond, IN 47374-1101; tel: 317-294-1339; email: megstree@earlham.edu. Applications will be reviewed as received. For expanded information, please visit www.earlham.edu/geosciences.

GEOLOGIST/ASSISTANT PROFESSOR
(SEMIDETOLOGY/STRATIGRAPHY)
WISCONSIN STATE NATURAL HISTORY SURVEY

Full-time, tenure-track faculty position to conduct fundamental and applied research in the areas of sedimentology and stratigraphy through field-based investigations, including geologic mapping, focusing on the stratigraphic and hydrostratigraphic framework of the Paleozoic rocks of Wisconsin. Work is performed in cooperation with other WGNHS staff, university personnel, and collaborative governmental agencies whose interests include geology, geophysics, hydrogeology, and mineral/energy resources. Ph.D. in geology or closely related field is preferred. Master’s degree in geology or related field with 4 years experience also acceptable. $50,000 minimum salary with excellent benefits. Review of applications will continue until position is filled. To apply, please send a cover letter along with resume, list of publications, teaching and research statements, and list of contact details for three references to: Joe DeWitt, Department of Geosciences, University of Wisconsin-Stevens Point, P.O. Box 1392, Stevens Point, Wisconsin 54482-1392. Equal Opportunity Employer. For more information, please visit www.wisc.edu/ces/hr/AA/EOE employer.

Brooklyn college/cuny

The Department of Geology at Brooklyn College seeks to fill a tenure track position, beginning September 2007, that will compliment our existing strengths in environmental geochemistry, paleontology, petrology, and petrophysics. The successful candidate will be expected to have received a Ph.D. in Geological research, and expand upon initiatives to integrate GIS into the curriculum. Teaching responsibilities would include introducing students to modern and traditional methods of research in the earth sciences, and subjects related to the individual’s area of expertise. The successful candidate will also be expected to maintain an active research program, contribute to collaborative research within the department, college, and the CUNY Earth and Environmental Sciences doctoral program, and supervise student research. The successful candidate must have a Ph.D., teaching experience, professional recognition in his/her field, a balance of field and laboratory experience, and a history of collaborative research would enhance an application. Salary is competitive and commensurate with qualifications and experience. Send curriculum vitae, three letters of recommendation, and writing sample or research paper to: Michael T. Hewitt, Assistant Vice President for Human Resource Services, Brooklyn College, 2900 Bedford Avenue, Brooklyn, NY 11210-2889. Review of applications will begin on November 1 and continue until position is filled. An AA/EEO/ADA/Irca Employer.

University of wisconsin

The Geology Department invites applicants for a tenure-track position beginning January 2007 through May 2008. We seek an enthusiastic teacher with expertise in hydrogeology, geomorphology, or a related field of earth-surface processes. The teaching load for the position is two lab courses per semester with the possibility to advise senior research projects. The successful candidate will be expected to teach introductory and an upper-level course in his/her field of expertise. Other courses may include introductory environmental geology and a college-wide freshman/sophomore seminar that emphasizes writing and speaking. Allegheny College is a selective private liberal arts college with an emphasis on teaching. The Geology Department has a strong record of student-faculty research and emphasizes field-based learning. More information about Allegheny College can be found at www.allegeny.edu. To apply please send a letter that describes your qualifications for the position, a curriculum vitae, teaching and research statements, and three letters of reference. Send materials to: Ron Cole, Chair; Dept. of Geology; Allegheny College; 520 N. Main St.; Meadville, PA 16335. A Ph.D. is preferred but A.M. degrees are welcome. Applications will be reviewed beginning 25 August 2006 and will continue until the position is filled. Allegheny College is an Equal Opportunity Employer: Women and minorities are encouraged to apply.

ILLINOIS STATE GEOLOGICAL SURVEY

Located on the campus of the University of Illinois Champaign-Urbana, IGS is one of the largest state geological agencies in the nation. State-of-the-art facilities and equipment support our 3-D geologic mapping program, an active electrical resistivity and seismic and service program, and a drilling program to support geological and geophysical research, including fully operational p- and s-wave land-streamer and shallow water-borne reflection systems, down hole geophones and hydrophones, and support personnel. Join our team effort to take these programs to the next level of excellence. Starting salary: $40,000 to $60,000 per year commensurate with education and experience. Closing date: 9/1/06. For required application form and more information contact: walters@igs, uiuc.edu or visit www.igs.uiuc.edu EEO/ADA Employer.

VISITING ASSISTANT PROFESSOR OF GEOLOGY
UNION COLLEGE

The Geology Department at Union College seeks to fill a 1-2/3-y position from June 2008. We seek a dynamic teacher and scholar with a research background in one or more of the following fields: paleontology, the fossil Geology, Oceanography, Paleoclimatology, and/or Paleontology. The successful candidate will be expected to teach introductory level courses in Environmental Geology, Global Climate Change, Natural Disasters, or Oceanography, and upper level courses in areas of expertise. Union College is a highly selective liberal arts college with a strong tradition of science and engineering at the undergraduate level. The Geology Department is very well equipped with analytical chemistry, and sedimentary/stratigraphic teaching and research facilities. More information about Union College is available on the Web at www.union.edu. We will begin reviewing applications on 15 August 2006. To apply, please send a cover letter along with resume, list of publications, teaching and research statements, and list of contact details for three references. Send application material to: John I. Garver, Chair, Department of Geology, Union College, 807 Union St., Schenectady NY 12308-2311, USA. Union College is an equal opportunity employer and strongly committed to student and workforce diversity.

Opportunities for Students

Nine Funded Research and Teaching Assistantships (starting Jan. 2007) recently became available for M.S. and Ph.D. students at UNLV. The Department of Geosciences at the University of Nevada Las Vegas (UNLV) has funding for Research Assistantships in Hydrogeology and Structural Geology (a total of 4 assistanatships), as well as 5 Teaching Assistantships. These positions are available for students who begin their graduate program in January 2007; the deadline for applying for spring admission is 1 October 2006. An application checklist can be found at www.unlv.edu/Colleges/Sciences/Geoscience/Students/Grad_admission_checklist.pdf. Teaching assistants may work with any of the 17 faculty members in the department. For information on our graduate program, departmental personnel, or other relevant information, please visit our Web site at http://geosci.unlv.edu. For additional information please contact Dr. Andrew Hanson, the department coordinator, at andrew.hanson@unlv.edu or phone at +1-702-895-1092.
Neogene-Quaternary Continental Margin Volcanism: A Perspective from México
edited by Claus Siebe, José Luis Macías, and Gerardo J. Aguirre-Díaz

This volume represents the culmination (follow-up) of a successful Penrose Conference held in January 2004 at the foot of Popocatépetl volcano in central México, where more than 100 specialists gathered to discuss magmatic arc volcanism in the Americas. Petrological and geochemical issues, eruption dynamics, hazard studies, and other topics relating to arc volcanoes were treated in great detail. This volume includes the most recent advances in our knowledge of the subduction-related Trans Mexican Volcanic Belt. This area is densely populated and includes some of the most beautiful, but potentially most dangerous, volcanoes in the world.

Special Paper 402 • Penrose Conference Series

Managing Drought and Water Scarcity in Vulnerable Environments
Creating a Roadmap for Change in the United States

Make a difference! Work with nationally-known leaders to craft a roadmap for change in drought management in the 21st century.

18–20 September 2006
Longmont, Colorado

www.geosociety.org/meetings/06drought

GSA TODAY, AUGUST 2006 29
GEOSCIENCE DIRECTORY

Books—Used & Rare
Recent, Rare, and Out-of-print Books. Find our catalogs at http://booksgeology.com for books on geoscience, paleontology, mineralogy, mining history, ore deposits, USGS publications, petroleum, remote sensing and metallurgy. E-mail: msbooks@booksgeology.com. We purchase books and entire collections, MS Book and Mineral Company, P.O. Box 6774, Lake Charles, LA 70606-6774 USA

Equipment and Supplies

DeltaNu provides the only portable handheld Raman Spectrometer for characterizing geological materials. The RockHound™ is used for structural and compositional characterization of rocks and minerals. Combine the NuScope™ with the RockHound to characterize inclusions or fine grains. www.deltaunu.com (866) 301-6328.

HORIBA Jobin Yvon Inc. Our world-leading Spectroscopic Microscopes are used throughout the geosciences to identify, characterize, and understand the formation of geological material. Confocal Raman and EDXRF Microscopy provide rapid molecular and elemental spectroscopy respectively. 1-800-438-7739. www.jobinynov.com/

Geology Tools—rock hammers, topo maps, aerial photos, field books, waterproof gear, and more. www.geology.com/store/

Science Teaching Aids
Igneous and Contact Metamorphic Rock Suites from the Gettysburg and Newark Basins of Pennsylvania. Including newly discovered Oliven Zmes rocks and Monocacy Hill Xenoliths. For price and information contact RRK_ANISE_PA@yahoo.com.

Travel, Tours, Field Camps
SW China Karst Tour—Oct. 2006, 2 wks. Geo, hydro, geomorph. Spectacular scenery, caves, Li River, Guilin Karst Research Institute and Museum. Dwight Deal dirtdoc@comcast.net

VolcanoDiscovery—Adventure & study travel. An experienced team of volcanologists, photographers, and tour guides offers tours to active volcanoes with full logistical support. Enjoy active, unusual holidays at our destinations: Europe, Hawaii’, Indonesia & more! Small groups, corporate incentives, universities, custom designed tours: www.volcanodiscovery.com.

Rates
$125: three months; $250: six months; $475: twelve months; (Max: 7 lines)
NEW! Include your corporate logo online! Contact for specs & pricing.
Monthly GeoMart listing includes FREE Web posting and link. Check it out online at: www.geosociety.org/classiads/geoMart.htm.

CONTACT
GSA Advertising Coordinator, Ann Crawford acrawford@geosociety.org +1.800.472.1988 x1053

Maps

Geologic Map of the Blue Ridge Parkway. Map covers entire length of the parkway at a scale of 1:500,000. $10. For ordering information, e-mail JMSGEOLOGIC@aol.com.

Available at the GSA Bookstore www.geosociety.org

An Earth Scientist’s Periodic Table of the Elements and Their Ions
by L. Bruce Railsback

GSA Sales and Service
P.O. Box 9140, Boulder, CO 80301-9140, USA
+1.303.357.1000, option 3
+1.888.443.4472 • fax +1.303.357.1071
Over the past half-century, Derek C. Ford and William B. White established the foundation and framework within which geomorphological, hydrological, and geochemical studies of caves and karst are conducted in North America. This was accomplished through almost entirely independent, parallel, and complementary research and teaching career paths. This volume contains papers derived from a representative cross section of the papers presented at the GSA meeting plus a small number of additional volunteered contributions. The general theme of the book is the diversity and breadth of geomorphological, hydrological, and geochemical research currently being conducted by the karst research community in North America and around the world. Ford and White each have contributed a retrospective contribution reviewing the progress in karst geomorphology and speleogenesis and karst hydrology over the past half-century. The other contributions examine specifically how different facets of karst terrains are being studied in the early years of the twenty-first century.

$95.00, member price $76.00
An amazingly powerful database and surface modeling solution for the oil and gas industry!

* Global Multi-Source Database
* Data Validation & Normalization
* Intelligent Well Matching
* Balanced 3D Earth Model

* Interactively Edit Contours
* Fault Modeling
* Cross Sections
* Fence & Chair Diagrams
* Interval Data Integration

* Isopach editing maintains balanced model
* Stratigraphic Top Normalization
* Over 60 Stratigraphic Columns Built-In
* Supports Windows 2000, XP

Integrating Oil & Gas Data in a Visual Environment

Petrobyte

WWW.PETROBYTE.COM
303-872-2087