Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton: A Record of Early Oceanic Mantle Processes

Jianghai Li, Timothy M. Kusky, and Xiongnan Huang, p. 4

2002 Medal and Award Recipients, p. 13

New GSA Fellows Elected, p. 13

New GSA Members and Student Associates, p. 20
NEED ON-SITE ANALYSIS?

Portable X-ray Diffraction
That’s Out Of This World!

Why send samples to a remote laboratory when analysis is needed now? Whether it’s on a drilling platform or a laboratory desktop, Rigaku’s Miniflex™ lets you identify compounds immediately and locally. No expertise on site? Rigaku’s software makes identification easy for novices. Difficult problems? Data can be e-mailed to your off-site analytical laboratory. No analytical laboratory? Let Rigaku’s contract services help.

The Miniflex™ is made for rugged environments. Miniflex’s™ are found at mine sites, in pick-up trucks for mobility, glove-boxes for isolation and undergraduate laboratories. The low cooling requirements and 110V operation makes it ideal for portable power units. Tight coupling of the X-ray source and detector provide amazing intensity at low power. This extremely compact system even gives excellent low angle performance for clay samples.

Rigaku’s Miniflex™ was not available for the Apollo program which sampled 6 lunar sites or the un-manned Soviet Luna program which sampled 3 sites, but maybe next time.
Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton: A Record of Early Oceanic Mantle Processes Jianghai Li, Timothy M. Kusky, and Xiongnan Huang

Dialogue: Shaping GSA’s Financial Future

GSA Names 2002 Medal and Award Recipients

New GSA Fellows Elected

Call for Geological Papers: 2003 GSA Section Meetings

GSA Short Courses Offered at GSA Annual Meeting

GSA Election: 2003 Officer and Councilor Nominees

Call for Field Trip Proposals

Commentary—Geoinformatics: A Nascent Revolution in the Earth Sciences

Geology from the Hill: Congressional Science Fellow Midyear Report

Desperately Seeking Short Course Proposals

New GSA Members and Student Associates

Announcements

Book Review

GSA Foundation Update

Journal Highlights

Classified Advertising

On the cover: The Great Wall of China northwest of Zunhua, built about 600 years ago during the Ming Dynasty, runs across the top of Yanshan Mountain, the largest and longest mountain in North China. It is built upon Mesoproterozoic sedimentary rocks (1.85-1.40 Ga) of the Changcheng System, which unconformably overlies Neoarchean (2.5 Ga) metamorphic rocks, including ophiolitic fragments and podiform chromites. Photo by Tim Kusky.

Left: Photomicrograph of nodular and orbicular chromite grains from a 2.5 Ga podiform chromite deposit in ophiolitic mélangé in the Zunhua area, North China Craton. The texture is one of the most characteristic of oceanic mantle rocks. Field of view is 12 mm. Image courtesy of Tim Kusky.
Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Mélange, North China Craton: A Record of Early Oceanic Mantle Processes

Jianghai Li, Department of Geology, Peking University, Beijing 100871 China
Timothy M. Kusky*, Department of Earth and Atmospheric Sciences, St. Louis University, St. Louis Missouri 63103, USA
Xiongnan Huang, Department of Geology, Peking University, Beijing 100871 China

ABSTRACT

We report 2.5 billion-year-old oceanic mantle podiform chromitite and mantle tectonite in ophiolitic melange in the North China craton. Tectonic blocks of peridotite, wehrlite, pyroxenite, harzburgitic tectonite, dunite, podiform chromitite, layered gabbro, sheeted dikes, and pillow lava are embedded in a strongly deformed metasedimentary and metavolcanic matrix. The blocks are traceable along strike into the relatively complete ca. 2.505 Ga Dongwanzi ophiolite. Textures in the ultramafic blocks provide a window into igneous and structural processes active in Archean suboceanic mantle. Chromitites in dunitic envelopes preserve igneous nodular, orbicular, antinodular, banded, massive, and disseminated textures. Dunite envelopes are common features of podiform chromitites, forming almost exclusively in the upper mantle or the crust-mantle transition zone of suprasubduction zone (harzburgite-type) ophiolites of younger geological ages. Nodular and orbiculare chromitite textures are known only from ophiolites and are interpreted to form during partial melting of flowing upper mantle, conditions needed to keep chromite suspended and growing concentrically into the magma. Minor orthopyroxene porphyroclasts with asymmetrical recrystallized tails and kink-banded olivine inclusions in chromite grains record plastic deformation and high-temperature shearing, before or during growth of the chromite. We attribute this deformation to flow in the Archean oceanic mantle. Later deformation is related to dismemberment of the ophiolite and incorporation into a mélangé during collision of the Eastern and Western blocks of the North China craton. This collision formed the 1600-km-long ophiolite-rich Central Orogenic Belt.

*Corresponding author: kusky@eas.slu.edu.

Figure 1. Distribution of Archean cratons, areas underlain by Precambrian crust, and Phanerozoic crust and podiform chromite deposits (modified after Kusky and Polat, 1999). Filled patterns show locations of major ophiolitic podiform chromite deposits in relation to crust and accretionary orogens of different ages. Squares—Archean; triangles—Proterozoic; circles—Phanerozoic. Zunhua podiform chromitites are associated with the 2.505 Ga Dongwanzi and related ophiolites of North China craton.

Figure 2. Tectonic map of North China craton showing division of North China craton into Eastern and Western blocks, separated by the Central Orogenic belt. (Modified after Li et al., 2000a, 2000b; Kusky et al., 2001).
INTRODUCTION

Ophiolites are remnants of oceanic lithosphere that have been tectonically emplaced onto continents. They provide valuable information on the nature of seafloor processes, global heat loss, and paleogeographic reconstructions of the continents through ancient times. The question of whether ophiolites are present in the earliest rock record (>2.0 Ga) is one of the most hotly debated scientific questions in early Earth history (Kusky and Polat, 1999; Karson, 2001). This is largely because until recently, complete ophiolite sections consisting of (in descending stratigraphic order) pillow lava, sheeted dike complex, gabbro, cumulate ultramafics, and tectonized mantle, had not been documented in rocks older than 2 Ga (Kontinen, 1987). The recently discovered 2.505 Ga Dongwanzi ophiolite of the North China craton (Kusky et al., 2001) is a complete ophiolite, but most original mantle textures and mineral parageneses are overprinted. In this paper, we report newly discovered podiform chromitites from Archean mantle harzburgite tectonite and dunite host rocks that are 60 km southwest of and related to the complete Dongwanzi ophiolite. Podiform chromitites with nodular-and orbicular-textured chromite balls in a harzburgite tectonite matrix are known only from ophiolitic settings (Fig. 1), and thus serve as a diagnostic marker of oceanic mantle, potentially as useful as the ophiolite suite itself for identifying fragments of ancient oceanic lithosphere and asthenosphere.

The 2.5 Ga Zunhua podiform chromitites have remarkably well preserved delicate magmatic and deformational textures that provide a glimpse into igneous and structural processes active in the sub-oceanic mantle in the Archean. These types of structures were known previously only from much younger oceanic mantle rocks and, thus, preserve a unique remnant of Archean oceanic mantle.

GEOLOGICAL SETTING

The North China craton is divided into two major blocks, the Western block and the Eastern block, separated by the Neoarchean Central Orogenic belt that extends across the craton (Fig. 2). The Western block contains a thick platformal sedimentary cover (Ordos block) intruded by a narrow belt of 2.55–2.5 Ga arc plutons along its eastern margin. The Eastern block contains a variety of ca. 3.80–2.5 Ga gneissic rocks and greenstone belts locally overlain by 2.6–2.5 Ga sandstone and carbonate. The 700-km-long Hengshan high-pressure granulite belt (2.5 Ga) is located along the western side of the Central Orogenic belt (Li et al., 2000a). Isotopic ages available from the Central Orogenic belt mainly range between 2.58 and 2.50 Ga (Li et al., 2000a; Wu et al., 1998). A younger age peak of 1.90–1.80 Ga is related to late tectonic extension (Li et al., 2000a). Central parts of the Central Orogenic belt include a complex assemblage of ca. 2.55–2.5 Ga deformed metavolcanic, metaplutonic, banded iron formation and metasedimentary rocks, intruded by ca. 2.5–2.4 Ga granite. A belt of 2.5–2.4 Ga
weakly metamorphosed flysch and molasse basins that extends along the eastern margin of the Central Orogenic belt (Fig. 2) is interpreted here as remnants of a foreland basin related to the collision of the Western and Eastern blocks. Rocks in this belt, colloquially named the Qinglong foreland basin, are now deformed in an east-vergent fold-thrust belt.

The Zunhua structural belt is a mainly amphibolite-facies terrane in the northern sector of the Central Orogenic belt, separated from an Archean granulite-gneiss dome (3.85–2.50 Ga) of the Eastern block by a major shear zone (Fig. 3). The Zunhua structural belt contains mainly northeast striking, intensely strained gneiss. Various thrust slices, including tonalite-trondhjemite-granodiorite gneiss, mafic plutonic rocks, supracrustal sequences, and granites are tectonically intercalated with each other (Kusky et al., 2001; Wu et al., 1998). More than 1000 ultramafic boudins have been recognized in the Zunhua structural belt, and these range from several meters to several kilometers in length (Figs. 3 and 4). These were intruded by ca. 2.56–2.5 Ga tonalitic gneiss, then 2.5–2.4 Ga granites (Wu et al., 1998).

Geochemical analyses reveal that mafic volcanics in the Zunhua structural belt have an oceanic affinity. They exhibit flat rare earth element to light rare earth element–depleted patterns that are similar to basalts from suprasubduction and mid-oceanic ridge settings (Wu et al., 1998; Zhao et al., 1993; Kusky and Li, 2002).

A complete 2.505 Ga ophiolite has been described from the northeastern part of the Zunhua structural belt (Kusky et al., 2001). The Dongwanzi ophiolite is in the same belt as the ultramafic blocks described in this contribution, and many blocks can be traced into the complex mélange zone along strike with the Dongwanzi ophiolite.

Figure 5. Field photos of podiform chromite and related outcrops, North Zunhua area. A. Flattened lenses and pods of dunite in a foliated serpentinized harzburgite matrix. B. Serpentinized harzburgite block in mélange, matrix of weathered biotite gneiss. C. Gabbroic block within sheared biotite gneiss. D. Mafic and ultramafic boudins as inclusions with dioritic gneiss. E. Pillow lava from block in mélange.
ophiolite may be interpreted as the largest block in the mélange that preserves preferentially the upper (crustal) part of the ophiolitic sequence. The blocks described here preserve deeper parts of the ophiolitic lithosphere than have so far been recognized in the Dongwanzi ophiolite.

Ophiolitic mélange in the Zunhua structural belt

Detailed field and petrographic analysis of mafic and ultramafic blocks in the southwestern Zunhua structural belt has revealed an assemblage of typical ophiolitic rock types. These include partly serpentinized harzburgite, peridotite tectonite, dunite, serpentinite, podiform chromitite, hombelndite, wehlite, pyroxenite, metagabbro, cumulates and pillow lavas, massive metabasalt, and greenschist (Figs. 3 and 4). Locally, well-preserved sheeted dikes, layered gabbro, and cumulates are recognized. All these units are intruded by ca. 2.5–2.4 Ga granite (Wu et al., 1998), demonstrating their Archean ages. All the Archean units are overlain unconformably by ca. 1.85 Ga sedimentary cover.

Ultramafic and mafic pods and tectonic blocks are stretched and occur within a strongly deformed matrix of foliated and sheared, fine-grained biotite-gneiss and hombelndite-gneiss with some layers of amphibolite and banded iron formation (Figs. 3 and 5). These blocks are intensely sheared and tectonically transposed along their margins. In contrast, internal structures of the blocks commonly show distinct foliation and fold patterns, discordant to the external foliations outside the blocks in the surrounding shear zones. Gabbro and pyroxenite boudins (Fig. 5) exhibit well-preserved relict cumulate textures and cyclic cumulate banding of clinopyroxene, olivine, and plagioclase. Within the cores of peridotite blocks and pods, metamorphic tectonite fabrics are well preserved as oriented orthopyroxene porphyroclasts, strings of chromite, and elongated ribbons of olivine (Fig. 6). The early tectonic fabrics defined by compositional layering include chromite seams, disseminated chromite, oriented nodular chromite, and flattened antinodular chromite. In younger ophiolite complexes, these textures are generally interpreted to form during high-temperature (>1000 °C) plastic deformation in the mantle (Nicolas and Arzi, 1991; Holtzman, 2000).

Late steeply dipping shear zones parallel to tectonic contacts with country rocks cut the early high-temperature–tectonite fabrics in the peridotite. Serpentinitization is concentrated along late shear zones and fractures cutting across the earlier foliation. Within these shear zones, ultramafic protoliths are separated into numerous small-scale pods and lenses, which are further flattened and stretched. The late tectonic fabric and hydrous metamorphism that overprints the harzburgitic mantle tectonites probably occurred during obduction-related emplacement of the ophiolite in the Archean.
commonly serpentinized, with magnetite distributed along the foliation planes.

Boudins and tectonic blocks of various types of gabbro and ultramafic cumulate within intensely sheared gneiss range in size from a few centimeters to hundreds of meters. Rarely, pods of dunite are recognized within olivine gabbro (troctolite). These rocks are generally less deformed than the ultramafic rocks. Alternating pyroxene-rich and plagioclase-rich modal and textural layering, 2–5 cm thick, locally preserve primary cumulate textures. The pyroxenite and olivine pyroxenite layers commonly transformed into foliated hornblende.

along their margins as the gabbros underwent amphibolite-facies metamorphism.

Blocks of sheeted dikes, up to 100 m along strike, occur within the Zunhua structural belt (Fig. 4). The chilled margins are recognized as 2–3-cm-thick boundaries defined by strong alignment of fine-grained hornblende. They have only one chilled margin, which is a consequence of repeated intrusions in the center of a single opening fissure. The width of individual half-dikes is generally tens of centimeters. The mineral assemblage is plagioclase + orthopyroxene + hornblende, characteristic of upper amphibolite facies conditions.

Spectacular pillow basalts are preserved locally in weakly deformed domains (Figs. 4 and 5E). Pillows vary in size from tens of centimeters to one meter. Pillowed flows are interbedded with amygdular massive basalt. The pillow lavas are pervasively altered to albite and chlorite assemblages. Rarely, the pillows preserve dark cryptocrystalline margins, representing original glassy selvages. The shapes of pillows indicate younging toward the northwest. Layers of pillow breccia and volcanoclastic sediment are intercalated with the pillow basalt, and these units are metamorphosed to plagioclase-biotite schist and biotite schist. Some ultramafic lenses are intercalated with pillow lavas, indicative of large amounts of shearing (either on the seafloor or during emplacement).

At least six large and numerous smaller chromitite-rich peridotite massifs are recognized within the southwestern Zunhua structural belt (Figs. 4 and 7). The chromitites are commonly lens shaped within dunite envelopes and are concordant with the foliation of the enclosing intensely serpentinized harzburgite.

Serpentinized pods and lenses show concentric rings with systematic variations in mineral composition and texture. Outer rings, commonly 2–10 cm thick, are composed of serpentine, whereas inner cores preserve dunite or massive harzburgite. Narrow, branching pyroxenite dikes (1–10 cm wide) are deformed within serpentinized harzburgite. The dikes are interpreted as channels of melt parental to oceanic basalts. Tectonic fabrics defined by folded chrome bands are well preserved in the cores of the serpentinized pods. Dunite envelopes are common features of podiform chromitites. They are known to form almost exclusively in the mantle or crust-mantle transition zone of suprasubduction zone (harzburgite type) ophiolites of different ages (Nicolas and Arzi, 1991; Zhou et al., 1996; Edwards et al., 2000).

Most of the chromitites are strongly deformed by high-temperature plastic flow, although nodular, orbicular, banded, massive, antinodular, and disseminated chromitite textures (sensu Johnston, 1936) are all locally preserved, especially in discordant pods (Fig. 7). Nodular textures consist of small balls of
chromite in a dunite matrix (Fig. 8B), whereas orbicular chromites consist of thin rings of chromite surrounding flattened cores of dunite (Fig. 8A). Nodular and orbicular chromites, with diameters of 2–10 mm and occasionally larger than 10 mm, are generally flattened into elliptical shapes, and some orbicules form flattened rings. Nodular and orbicular textures are the most typical magmatic structures of ophiolitic chromitites (Nicolas, 1989; Nicolas and Arzi, 1991). Abundant deformed olivine occurs as inclusions in the chromite (Fig. 8E), although they are widely altered into serpentine. Preliminary work on the crystallographic preferred orientations of olivine shows preferred slip on (010)[100] slip systems, which occurs at temperatures >1200 °C (Nicolas, 1989).

Orthopyroxene porphyroclasts show asymmetrical recrystallized tails indicating high-temperature shearing.

Nodules are locally sorted into layers by their sizes. The nodules and orbicules show patterns of flattening and mutual impression along their contacts with each other (Figs. 8A, 8B, and 8C), suggesting that they settled while in a melt. These features are interpreted to be a result of rapid deposition of chromite nodules while they were still plastic. The nodules and orbicules commonly exhibit stretching fabrics (lineation and foliation), interpreted to have formed soon after crystallization, while the interstitial olivine was still in liquid form. Some are also elongated by plastic strain and show a preferred orientation. Most nodules are oriented parallel to the foliation. The outer boundary of single nodules is typically smooth and rounded (Fig. 8B). In contrast, the inner boundaries display individual chromite grains that grew inward (Fig. 8A). These textures are interpreted to record dynamic magmatic flow or partial melting conditions, needed to keep chromite suspended and growing concentrically into the magma. The delicate magmatic structures preserved show that they have not been significantly deformed after their formation, and they preserve the primary interaction between Archean melts and the upper mantle.

In some cases, nodules grade into antinodules in the same hand specimen. They record magmatic growth and settling in the upper mantle (e.g., Zhou et al., 1996; Edwards et al., 2000). Rounded inclusions of olivine, orthopyroxene, and other silicates occur within chromite grains (Fig. 8E), and some inclusions of olivine show kink bands that record plastic deformation before or during growth of the chromite. A few fluid inclusions have also been observed within the silicate inclusions in chromite. These original magmatic structures are commonly destroyed with higher shear strain. For example, nodular and orbicular textures are strongly stretched and transposed into layering, folded bands, or antinodular chains. Compared with nodules, orbicules are more strongly stretched, their ratio of X/Z being up to 5:1 (Figs 7E and 8A). We attribute this deformation to mantle flow in the oceanic mantle, as suggested for similar structures in many younger ophiolites (e.g., Nicolas, 1989).

Antinodular chromitites consist of flattened dunite aggregates with lengths of 2–10 mm surrounded by fine-grained chromite chains or flattened networks (Figs. 7, 8F, and 8H). Flattened antinodular texture is typical of high-temperature plastic deformation in oceanic mantle, which is a result of straining of weaker
olivine inclusions in a rigid chromite-rich matrix. Alignment of needle-like chromite also indicates strong shearing. Layered and banded textures consist of anastomosing 2-4 cm thick bands and chains of chromite surrounding ovoids of olivine (Figs. 7F and 7H), which were generated by shearing of antinodular and nodular chromite layers, rather than by crystallization and accumulation. Tight folds are common in the banded chromitite. In a few places, narrow pyroxenite, dunite, and gabbroic dikes crosscut them. Some chromite layers occur as rootless folds or asymmetric lensoidal boudins, and other layers and lenses consist of nodules. Pull-apart textures are common in the massive and layered chromitite deposits (Fig. 8G). These form extensional veins and lenses and consist of nodules. Pull-asymmetric lensoidal boudins, and other and gabbroic dikes crosscut them. Some few places, narrow pyroxenite, dunite, common in the banded chromitite. In a chromite layers, rather than by crystallization by shearing of antinodular and nodular (Figs. 7F and 7H), which were generated during crustal thickening during orogenesis. This model also explains the exhumation of ca. 2.5 Ga high-pressure granulites and retrograde eclogites in the Hengshan belt to the west (Li et al., 2000a) (Fig. 9).

Harzburgite blocks in the mélangé host podiform chromitites with dunite envelopes. The blocks grade up-section into wehrlite, pyroxenite, olivine gabbro (troctolite), and gabbro. Podiform chromitites are a normal component of ophiolites of different ages. They are located in the transition zone between layered gabbro and peridotite tectonite, and the lherzolite-harzburgite transition in ophiolites (Nicolas and Arzi, 1991). Their geological occurrence is closely associated with oceanic spreading processes (Nicolas and Arzi, 1991). Late Proterozoic podiform chromitites in ophiolites have been described in several areas, and Phanerozoic examples are numerous (Fig. 1). The oldest relatively intact podiform chromitite previously recognized is that from the Jourama and Outokumpi ophiolite complexes (2 Ga), Finland (Kontinen, 1987; Vuollo et al., 1995). The Zunhua chromite ores exhibit remarkable similarities to the podiform ores described from the examples mentioned above. The Zunhua nodular and orbicular chromites are characteristic of alpine-type peridotites or ophiolitic chromite ores (Nicolas, 1989; Peters et al., 1991; Dilek et al., 2000). It is now mainly preserved in the core of tectonic blocks. These early lineations defined by deformed magmatic inclusions and the elongation of ore zones are not parallel to later lineations related to the emplacement of the blocks along shear zones, supporting the idea that they represent early mantle-deformation-related fabrics. Podiform chromitites are remarkably resilient to later deformation and metamorphism since they are generated at high temperatures (1200–1300 °C) and become very rigid when cooled, thus resisting later shear. These asthenospheric chromite pods are miniature time capsules preserving extraordinary amounts of information about the Archean mantle that we have only begun to tap and understand.

Coupled with the presence of a full ophiolite sequence in the Dongwanzi complex, the documentation of the Zunhua chromitites provides evidence for the operation of seafloor spreading and plate tectonics during the Archean before 2.5 Ga. We prefer to ascribe a faster-to-moderate spreading rate to the formation of the Zunhua podiform chromitites, as podiform chromite is mainly associated with harzburgite-type ophiolites (Nicolas and Arzi, 1991). Although the field and petrographic observations are consistent with the Neoarchean ophiolites of the Central Orogenic belt preserving relatively hot mantle features, we do not have evidence that this mantle record was any hotter than the present-day range of mantle temperatures. However, the hot Archean North China mantle is consistent with some of the higher heat production during the Archean being accommodated by faster creation of oceanic lithosphere from a slightly hotter oceanic asthenosphere.
REFERENCES CITED

ACKNOWLEDGMENTS
This research was supported by the National Science Foundation of China (No. 49832030), Peking University (Project 985), the U.S. National Science Foundation (Tectonics Program EAR-0221567), and by St. Louis University. Li thanks X.L. Qian for discussions and his extensive help. Jesse Dann, Claude Herzberg, John Encamacion, and Igor Puchtel provided thoughtful reviews of this work. This is a contribution to International Geological Correlation Program Project 453.

Manuscript received February 7, 2002; accepted April 30, 2002.

CORRECTION
Persistent Holocene Outflow from the Black Sea to the Eastern Mediterranean Contradicts Noah’s Flood Hypothesis
GSA Today, v. 12, no. 5, p. 4–10 (May 2002)

In final production, some graph axes and scale tick marks were inadvertently deleted from Figure 3, “Downhole plots of key proxy variables.” A corrected full-size, color figure can be found in the article posted at www.geosociety.org. Go to “Online Journals,” then to “Archive.” GSA Today regrets the error.

Aksu et al., Figure 3. Downcore plots of key proxy variables, explained in text. Core locations in Figure 1B. The water depth at each site is indicated (e.g., ~630 m). Samples have been transposed into a time domain using radiocarbon dates tabulated in Aksu et al. (2002a), and the oxygen-isotope and ash record in Core 20. Control points are marked by red symbols along the age scale. Where red dots (sample positions) cluster, the accumulation rate was highest (e.g., deltaic strata at the base of Cores 11 and 9). Where red dots are missing for some variables, the species required for determinations were absent (e.g., Turborotalita quinqueloba before ca. 10 ka for Core 12). The mauve-colored band from ca. 10–6.5 ka coincides with sapropel deposition and significant changes in several proxy variables.
In a 1998 Environmental Scan, the American Society of Association Executives reported on 14 trends affecting associations, all of which presently impact GSA. This month, we highlight one of those trends—“Revenue Sources: The need for new revenue will drive associations to become more innovative in seeking out new partners and nontraditional sources of income”—and share with you how GSA is responding.

In February’s “Dialogue” you read about GSA’s finances and how the Society must reduce the size of its operating budget. We’re now on a diet, so to speak, and you may have already noticed some changes at headquarters. While lowering expenditures is an important first step toward improving our financial health, there is more to be done. We must also increase revenue.

The Current Picture

At present, publications produce approximately one-third of GSA’s total revenue. Meetings and member dues account for another third. Investment income provides about one-fifth of the total, and the GSA Foundation, grants, and other miscellaneous sources make up the balance.

If we are to maintain GSA’s profile as a major earth science society beyond the next decade, we must be prepared for changes in these revenue streams.

Consider publications, for example. GSA’s journals are among the most highly cited in the geosciences; they are vibrant and doing well. At the same time, we know that the structure of the publications business is changing. GSA plans to change with it by participating in an aggregate of online society journals that offers increased convenience and research horsepower. (See “Dialogue,” March 2002, for details on the aggregate.)

While we are confident moving ahead, we don’t know how this change in the structure of our publications business will alter the revenue stream. We do know that we cannot assume the picture will remain the same. This can be said for all of GSA’s major sources of revenue, as well as for their proportional relationships to one another.

On the plus side, GSA is one of only a few scientific societies presently growing in membership. In a recent address to the Council of Scientific Society Presidents, Sharon Mosher analyzed reasons for this; she concluded that a decline that was also affecting GSA ended in 1995–1996 as a result of planned changes to address the problem. These changes involved: revamping the approach to annual meetings (which had become stuffy and regionally focused) to address significant disciplinary, interdisciplinary, and global problems (Pardee and Topical sessions); making a special effort to encourage students to join and then stay as GSA members; and bringing a more global perspective to the Society when it comes to addressing key scientific issues (e.g., the recent GSA-GSL 2001 joint meeting on earth science systems).

The open-minded, innovative approach that has been applied to meetings must be taken to the Society as a whole: As our environment changes, we must be prepared to change with it on any and all fronts.

A New Entrepreneurial Spirit

It is our view that a new entrepreneurial spirit is required within GSA. We need to look ahead, think outside the box, and plan for the future.

Recognizing this, we have formed an ad hoc Long-Range Planning Committee to investigate ways of changing GSA and adding new revenue streams from a variety of sources to meet future needs. Possible new revenue streams include a much higher income from grants; marketing and selling services to industry, the community, and government that are based on the skill set of our headquarters staff; new classes of membership; and better utilization of our building.

We have asked this committee’s members to prepare an interim report by this October and a final report by May 2003. We know that they would welcome all suggestions from you, our members. Please submit your thoughts to Ann Cairns, acairns@geosociety.org, at GSA headquarters. Thank you.
GSA Names 2002 Medal and Award Recipients

Medals and awards for 2002 will be presented to the following people at the GSA Annual Meeting in Denver:

Penrose Medal
- Walter Alvarez
 - University of California at Berkeley

Arthur L. Day Medal
- Richard G. Gordon
 - Rice University

Young Scientist (Donath) Medal
- To be announced.

GSA Distinguished Service Awards
- Samuel S. Adams
 - Lincoln, New Hampshire
- David E. Dunn
 - University of Texas at Dallas
- John W. Geissman
 - University of New Mexico

GSA Public Service Award
- John A. McPhee
 - Princeton, New Jersey

Honorary Fellow
- John F. Lovering
 - Australia

Doris M. Curtis Women in Science Award (Sponsored by Subaru of America, Inc.)
- Miriam E. Katz
 - Rutgers State University

AGI Medal in Memory of Ian Campbell
- Frank H. Rhodes
 - Cornell University

John C. Frye Environmental Geology Award
- To be announced.

GSA Names 2002 Medal and Award Recipients

<table>
<thead>
<tr>
<th>Award</th>
<th>Recipient</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rip Rapp Archaeological Geology Award</td>
<td>Paul Goldberg</td>
<td>Boston University</td>
</tr>
<tr>
<td>Gilbert H. Cady Award (Coal Geology Division)</td>
<td>Ronald W. Stanton, (deceased)</td>
<td>U.S. Geological Survey, Reston, Virginia</td>
</tr>
<tr>
<td>E.B. Burwell, Jr., Award (Engineering Geology Division)</td>
<td>Thomas E. Eastler</td>
<td>University of Maine</td>
</tr>
<tr>
<td></td>
<td>Donald J. Percious</td>
<td>Washington, D.C.</td>
</tr>
<tr>
<td></td>
<td>Paul R. Fisher</td>
<td>Green Valley, Arizona</td>
</tr>
<tr>
<td>George P. Woollard Award (Geophysics Division)</td>
<td>To be announced.</td>
<td></td>
</tr>
<tr>
<td>History of Geology Award</td>
<td>Dennis Dean</td>
<td>Evanston, Illinois</td>
</tr>
<tr>
<td>O.E. Meinzer Award (Hydrogeology Division)</td>
<td>Thomas C. Winter</td>
<td>U.S. Geological Survey, Lakewood, Colorado</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New GSA Fellows Elected

GSA Council elected the following Fellows at its spring 2002 meeting:

<table>
<thead>
<tr>
<th>Julie Brigham-Grette</th>
<th>Karen S. Harp</th>
<th>Douglas J. Nichols</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Massachusetts</td>
<td>Colgate University</td>
<td>U.S. Geological Survey, Denver, Colorado</td>
</tr>
<tr>
<td>Kerry D. Cato</td>
<td>W. Burleigh Harris</td>
<td>Carrie Jennings Patterson</td>
</tr>
<tr>
<td>Earth Consultants International</td>
<td>University of North Carolina at Wilmington</td>
<td>Minnesota Geological Survey</td>
</tr>
<tr>
<td>Eric H. Christiansen</td>
<td>Kirk R. Johnson</td>
<td>Frank J. Pazzaglia</td>
</tr>
<tr>
<td>Brigham Young University</td>
<td>Denver Museum of Nature and Science</td>
<td>Lehigh University</td>
</tr>
<tr>
<td>Allen J. Dennis</td>
<td>Jeffrey D. Keith</td>
<td>Gerald M. Ross</td>
</tr>
<tr>
<td>University of South Carolina</td>
<td>Brigham Young University</td>
<td>Geological Survey of Canada</td>
</tr>
<tr>
<td>Yildirim Dilek</td>
<td>Allan Kolker</td>
<td>William W. Simpkins</td>
</tr>
<tr>
<td>Miami University</td>
<td>U.S. Geological Survey, Reston, Virginia</td>
<td>Iowa State University of Science & Technology</td>
</tr>
<tr>
<td>Thomas E. Eastler</td>
<td>Bart J. Kowallis</td>
<td>Barbara J. Tewksbury</td>
</tr>
<tr>
<td>University of Maine</td>
<td>Brigham Young University</td>
<td>H.L. Vacher</td>
</tr>
<tr>
<td>Judy Ehlen</td>
<td>Chia-Yu Li</td>
<td>University of South Florida</td>
</tr>
<tr>
<td>USA Engineer Research & Development Center</td>
<td>National Taiwan University</td>
<td>Terry R. West</td>
</tr>
<tr>
<td>Charles H. Fletcher III</td>
<td></td>
<td>Purdue University</td>
</tr>
<tr>
<td>University of Hawaii</td>
<td></td>
<td>Thomas C. Winter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U.S. Geological Survey, Denver, Colorado</td>
</tr>
</tbody>
</table>
Crystal Clear.

The Meiji EM Series of Modular Stereo Microscopes.

If you are looking for precision, durability, quality and value in a Stereo Microscope, we invite you to take a closer look at Meiji’s EM Series of Stereo Microscopes.

The modular design (A wide variety of bodies, single magnification or zoom - rotatable 360˚, auxiliary lenses, eyepieces, stands, holders, etc.) gives you the freedom to create the ideal instrument for your specific need or application, and Meiji stands behind every instrument with its “Limited Lifetime Warranty.”

For more information on these economically priced Stereo Microscopes, please call, FAX, write us or log on to our website today.

MEIJI TECHNO AMERICA
2186 Bering Drive, San Jose, CA 95131,
Tel: 408.428.9654, FAX: 408.428.0472
Toll Free Telephone: 800.832.0060 or visit our website at www.meijitechno.com

Call for Geological Papers: 2003 GSA Section Meetings

South-Central–Southeastern Sections Joint Meeting
March 12–14, 2003
University of Memphis, Memphis, Tennessee
Abstract deadline: December 10, 2002
Information: Dan Larsen, Dept. of Earth Sciences, University of Memphis, 421 J.M. Smith Bldg., Memphis, TN 38152, (901) 678-4358, dlarsen@memphis.edu.

North-Central Section
March 24–25, 2003
Kansas City Airport Hilton, Kansas City, Missouri
Abstract deadline: December 10, 2002
Information: Raymond M. Covenev Jr., Dept. of Geosciences, 420 Flarsheim Hall, University of Missouri, 5110 Rockhill Rd., Kansas City, MO 64110-2499, (816) 235-2980, covenev@umkc.edu.

Northeastern Section
March 27–29, 2003
Westin Hotel, Halifax, Nova Scotia
Abstract deadline: December 12, 2002
Information: Jane Barrett, Dept. of Earth Sciences, Dalhousie University, Halifax, NS B3H 3J5 Canada, (902) 494-1473, jmbarret@is.dal.ca.

Cordilleran Section
April 1–3, 2003
Hotel NH Krystal, Puerto Vallarta, Mexico
Abstract deadline: December 16, 2002
Information: Elena Centeno-García, Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F. 04510, México, centeno@servidor.unam.mx.

Rocky Mountain Section
May 7–9, 2003
Fort Lewis College, Durango, Colorado
Abstract deadline: January 30, 2003
Information: James Collier, Dept. of Geosciences, Fort Lewis College, 1000 Rim Dr., Durango, CO 81301-3999, (970) 247-7129, collier_j@fortlewis.edu.
GSA Short Courses Offered at GSA Annual Meeting

For a high level of understanding and knowledge, sign up for a great short course at the GSA Annual Meeting in Denver. For registration information and details on student scholarships offered by several GSA Divisions, see the June issue of GSA Today or visit www.geosociety.org. All courses will be held at the Colorado Convention Center. Questions? Contact Edna Collis, ecollis@geosociety.org, (303) 357-1034.

Preregistration deadline: September 20

1. Anisotropy of Magnetic Susceptibility and Applications to Granitic Rocks
 Fri. and Sat., Oct. 25-26, 8 a.m.–5 p.m. both days. Cosponsored by GSA Structural Geology and Tectonics Division. Limit: 30. Fee: $320, students $300; includes course manual and lunches. CEUs: 1.6.
 Intended for researchers and graduate students, this course will include rock magnetism and mineralogy applied to granites, variations of susceptibility with temperature, field, grain size, sampling and orienting procedures, measurements, data processing, and analysis of anisotropies in both natural and synthetic materials, and applications to tectonic studies. Participants may bring their own data for discussion. **Faculty:** Eric C. Ferré, Dept. of Geology and Geophysics, University of Wisconsin; Ph.D., University of Toulouse, France; Mike Jackson, Institute for Rock Magnetism, University of Minnesota; Ph.D., University of Michigan.

2. Managing Environmental Projects
 Fri. and Sat., Oct. 25-26, 8 a.m.–5 p.m. both days. Cosponsored by GSA Engineering Geology Division. Limit: 30. Fee: $300, students $280; includes course manual and lunches. CEUs: 1.6.
 Presenting an overview of all aspects of the field of environmental project management, this course includes in-depth discussions of all federal and many state environmental laws and regulations and how they are applied to ensure regulatory compliance and protection of human health and the environment. The course will present the "science" of environmental management including applications of chemistry, biology, toxicology, and geology-hydrology. It will also cover pollution prevention, emergency preparedness, health and safety issues, regulatory permitting, risk assessments, sampling and monitoring protocols, remediation methods, professional liability and ethics, and project management skills. An optional exam will be offered on the afternoon of the second day for those interested in Registered Environmental Manager (REM) certification through the National Registry of Environmental Professionals (NREP). There is an additional fee for the exam that also includes one year's registration with NREP. **Faculty:** Raymond C. Kimbrough, P.E. LaMoreaux and Associates; B.A., University of Alabama.

3. Abrupt Climate Changes
 Sat., Oct. 26, 8 a.m.–5 p.m. Cosponsored by GSA Quaternary Geology and Geomorphology Division. Limit: 30. Fee: $240, students $220; includes course manual and lunch. CEUs: 0.8.
 The record in Greenland ice tells us that Earth’s climate system has undergone large and abrupt changes, raising the question as to whether the ongoing increase in atmospheric CO2 will lead to a similar nonlinear response. The course will emphasize the record of these climate jumps and what they are trying to tell us about the joint operation of our ocean-atmosphere system. **Faculty:** Wallace S. Broecker, Lamont-Doherty Earth Observatory, Columbia University; Ph.D., Columbia University.

4. Estimating Rates of Groundwater Recharge
 Sat., Oct. 26, 8 a.m.–5 p.m. Cosponsored by GSA Hydrogeology Division. Limit: 30. Fee: $275, students $255; includes course manual and lunch. CEUs: 0.8.
 Good estimates of groundwater recharge are required to accurately assess water resources and evaluate aquifer vulnerability to contamination. This course will review theory, assumptions, uncertainties, advantages, and limitations of different approaches for estimating recharge rates. We will discuss physical, tracer, and numerical modeling techniques based on surface water, unsaturated zone, and saturated zone data. The course content is aimed at practicing hydrologists and advanced hydrology students. **Faculty:** Richard W. Healy, U.S. Geological Survey, Denver; B.S., University of Illinois; Bridget R. Scanlon, Bureau of Economic Geology, University of Texas, Austin; Ph.D., University of Kentucky.

5. Laser Ablation ICP-MS: Fundamentals and Applications to Environmental and Biological Samples
 Sat., Oct. 26, 8 a.m.–5 p.m. Cosponsored by GSA Archaeological Geology Division. Limit: 30. Fee: $275, students $255; includes course manual and lunch. CEUs: 0.8.
 Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a solid sampling technique that allows the quantitative determination of elements at trace (ppm) levels whilst preserving the textural context of the analysis. LA-ICP-MS is seeing widespread use in geochemistry as new analytical methods come online and is beginning to be used for the analysis of biological materials. The short course introduction will focus on the fundamentals of LA-ICP-MS and leads into discussion of specific examples where LA-ICP-MS is used to address environmental issues. The structure allows for the active interchange of experiences and ideas between the course participants. **Faculty:** Alan E. Koenig, Cetac Technologies, Omaha; M.S., Colorado State University; Ian Ridley, U.S. Geological Survey, Denver; Ph.D., Royal School of Mines, University of London.

6. Practical Methods in Applied Contaminant Geochemistry: From Characterization to Remediation
 Sat., Oct. 26, 8 a.m.–5 p.m. Cosponsored by GSA Hydrogeology Division. Limit: 30. Fee: $250, students $230; includes course manual and lunch. CEUs: 0.8.
 Geochemical data obtained as part of regulatory-driven hydrogeologic investigations are commonly too incomplete, of scant number, and of insufficient quality to use the kinds of geochemical approaches that are normally learned in university courses on acid-base and chemical-equilibrium geochemistry. This course will teach "practical" essentials of contaminant geochemistry and how to effectively apply them in consulting (and, arguably, academic) practice. **Faculty:** Donald I. Siegel, Dept. of Earth Sciences, Syracuse University; Ph.D., University of Wisconsin.
Attention Voting Members:

GSA Election
Starts July 30, 2002

The success of GSA depends on the work of the elected officers who serve on its Executive Committee and Council. Make your wishes for GSA known by voting.

In late July, you’ll receive a postcard with instructions on how to access a secure Web site and your electronic ballot listing officer nominees for 2003 and councilor nominees for the term 2003–2005. Biographical information on each candidate and the 2001 Annual Report also will be available on the site.

Paper versions of ballots, candidate information, and the 2001 Annual Report will be readily available to those who do not have Internet access or choose not to vote online.

Watch for your ballot information and vote! Ballots must be submitted electronically or postmarked by August 30, 2002.

President
B. Clark Burchfiel
Massachusetts Institute of Technology

Vice President
Rob Van der Voo
University of Michigan

Treasurer
John E. Costa
U.S. Geological Survey, Portland, Oregon

Leonard F. Konikow
U.S. Geological Survey, Reston, Virginia
Donald I. Siegel
Syracuse University

Steven M. Stanley
John Hopkins University
Steven G. Driese
University of Tennessee—Knoxville

James C. Zachos
University of California—Santa Cruz
Michael A. Arthur
Pennsylvania State University—University Park

Kenneth E. Kolm
Argonne National Lab, Lakewood, Colorado
J. Christopher Hepburn
Boston College

Call for Field Trip Proposals
2003 GSA Annual Meeting
November 2–5, 2003
Seattle, Washington
We are interested in proposals for half-day, single-day, and multi-day field trips beginning or ending in or near Seattle and dealing with all aspects of the geosciences.

Please contact the 2003 Field Trip Chair:
Terry Swanson
Department of Earth & Space Sciences
University of Washington
63 Johnson Hall, Box 351310
Seattle, WA 98195
(206) 543-1923
tswanson@u.washington.edu

Due date for field trip proposals: October 1, 2002

www.geosociety.org
Submit your abstract for the 2002 Annual Meeting online (click on Meetings & Excursions).
Hurry! The deadline is July 16!
While you’re there, you can also preregister, make your travel plans, and even book your hotel.
We’ve improved the home page and site navigation to bring out some of those hard-to-find things like Public Policy and Information for Students. Check it out.
Geoinformatics: A Nascent Revolution in the Earth Sciences

M. Lee Allison, Kansas Geological Survey, Lawrence, Kansas
Walter S. Snyder*, National Science Foundation, Arlington, Virginia
J. Douglas Walker, University of Kansas, Department of Geology, Lawrence, Kansas

Many disciplines outside the earth sciences are building consensus and preparing comprehensive plans to design and implement informatics systems. Within the spatially based scientific communities, including earth sciences, ocean and atmosphere sciences, and the biodiversity field, there is a rapidly growing and widespread appreciation of the need to collaborate on this mission. Scores of independent geoinformatics activities are under way in the earth sciences but with no overarching plan for coordination. We in the earth sciences community must assess our own needs, capabilities, and desires to join the informatics revolution.

The rationale for this is clear. With the advent of large-scale digital data gathering and conversion capabilities, we are becoming overwhelmed with data and must tackle the issues of management and dissemination of large and often disparate data sets. Managing and exploring data to create information is generally a task undertaken by information science or informatics efforts.

Informatics is the rapidly evolving field that promises not only to handle the huge databases generated by university consortia and state and federal agencies, but to serve the needs of small teams of investigators and individual scientists. Informatics integrates and applies information technologies with scientific and technical disciplines. It provides for distributed computing and enhanced numerical modeling, advanced visualization, statistical and mapping tools, and a system to archive data that would otherwise be lost to the greater community. The results of these informatics efforts are transforming areas of research with phenomenal new capabilities. For example, bioinformatics centers have been established around the world to maximize the benefits from information in the human genome and related databases. Many of these centers are funded up to the $100 million per year level (Stone, 2001). The draft report from a blue-ribbon National Science Foundation panel (see Additional Reading) calls for a $650 million per year program aimed at "revolutionizing the conduct of science and engineering through information technology and cyberinfrastructure."

Informatics also is integral to the creation and success of the second-generation Web, sometimes referred to as the Semantic Web, where computers will understand the meaning of words and concepts and make the kinds of logical connections in searches that the human mind does.

In the private sector, informatics is implemented as "Web services," where businesses create applications they can use themselves or sell. These services allow integration of databases and software written in different languages by different vendors, running on different operating systems. Instead of many years of hand coding links among many business partners, companies find that Web services can create interactive accessibility over the Internet within months. Former Apple Computer president John Scully believes that in the next two decades, Web services "could be as important as personal computers have been during the last 20 years" (Moore, 2001).

Geoinformatics applies the informatics concept to the vast quantities of scientific data that have geographic locations or spatial coordinates. For example, it’s estimated that 85% of all federal government data have a geographic component. The National Spatial Data Infrastructure is an initiative managed by the Federal Geographic Data Committee to standardize spatially based data from throughout federal agencies and make them accessible online.

By necessity, a geoinformatics system will not gather data restricted to a single Web site, but will collect pertinent information from databases distributed around the world. The system will include: efficient information and data retrieval mechanisms; 3-D search engines that can also query based on time in the past; accessibility to and application of visualization, analysis, and modeling capabilities; online workspace, software, and tutorials; and integration with online scientific journal aggregates and digital libraries. In practical terms, such a system will provide the ability to gather data over the Web from a variety of distributed sources, regardless of computer operating systems, database formats, and servers. Seamless interoperability of databases promises quantum leaps in productivity not only for scientific researchers but also for many areas of society including business and government. Search engines will gather data about any geographic location, above, on, or below ground, covering any geologic time, and at any scale or detail. A distributed network of digital geolibraries can archive permanent copies of databases that are maintained by the data authors.

The geoinformatics system will generate results from widely distributed sources. In this way the system functions as a dynamic data network. Instead of posting specific tables, charts, or maps based on static databases, the dynamic system creates these products each time an inquiry is made, using the latest information in the appropriate databases. Thus, in the dynamic system, a map generated today may differ from one created yesterday and one to be created tomorrow, because the databases used to make it are constantly (and sometimes automatically) updated.

The next step, and the challenge for all of us in the earth science community, is to come to agreement on how we will participate in the geoinformatics revolution.

References Cited

Relevant Links

www.geoinformaticsnetwork.org
http://bioinformatics.org
www.fpdc.gov
www.dlese.org

Additional Reading

An Information Technology Infrastructure Plan to Advance Ocean Sciences, Ocean Information Technology Infrastructure Steering Committee, January 2002, sponsored by National Science Foundation, Office of Naval Research, and National Oceanographic Partnership Program (www.geo-prose.com).

Revolutionizing Science and Engineering through Cyberinfrastructure: Report of the National Science Foundation Blue-Ribbon Advisory Panel on Cyberinfrastructure, Draft 1.0, April 19, 2002 (www.cise.ri.gov/brb/ribbon).

*The views expressed are the author’s and not necessarily those of the NSF.
Much has happened since my first report to the Society (GSA Today, March 2002, p. 20–21). The fellowship year did have a challenging beginning. My introduction to Capitol Hill was dominated by the terror attacks of September 11 on New York and Washington, which were followed by the anthrax evacuations of the Hart Senate Office Building and then cramped working conditions, as we squeezed into makeshift office space.

Life on the Hill has settled down to a "new normal," and we are finally back home in Hart. Now it’s the work itself that is challenging. The issues Congress is grappling with are both crucial and contentious. The public policy process is fascinating, although sometimes convoluted. There clearly is a need and a place for science in the formulation of national public policy, but more often than not, science turns out not to be the final deciding factor.

I am very fortunate to be on the personal staff of Senator Joseph I. Lieberman. This Democrat from Connecticut was a 2001 recipient of the Pick and Gavel Award, established by the Association of American State Geologists to recognize individuals who have made significant contributions to advancing or facilitating the role of the geosciences in the public policy arena. In this article, I describe some of the geoscience issues facing the nation’s 107th Congress.

As one of the first staffers into the Hart building on January 22, my feelings were probably not unlike those of archaeologists unearthing the ruins of Pompeii, also rapidly abandoned, but in 79 A.D. rather than 2001 A.D. A distant day seemed frozen in time as I walked through the building and the office suite. Coffee mugs sat where they were left on desks, messages from October waited to be collected from fax machines, while vital documents and works in progress that were so important months earlier lay neglected. Whenever necessary, the work of the U.S. Senate was reconstructed and completed elsewhere in temporary quarters. Government continued to function despite the efforts of terrorists.

Among the hot geoscience-related policy debates of the 107th Congress are: evolution versus creationism in the schools, drilling for oil in the Arctic National Wildlife Refuge, and disposal of high-level nuclear waste beneath Yucca Mountain in Nevada. Other hot science and technology issues include: widespread deployment of broadband Internet services and incentives to help colleges and universities produce greater numbers of physical scientists and mathematicians. Naturally, defense and homeland security matters are ever present and include dealing with the potential of more advanced bio-terrorist attacks, aircraft and airport protection, fighting the war in Central Asia, highway bridge and tunnel security in the United States, and water supply protection.

Space and time prevent me from detailing all of these issues, so I will make do with some general remarks.

Members of Congress clearly strive to fulfill the wishes of their constituents. Nowhere is this more clearly demonstrated than in the two energy-related matters of (1) drilling for oil in Alaska, and (2) disposing of nuclear waste in Nevada. Both of these issues are complex, the debates are heated, and the results will be far-reaching. The debates occur against a backdrop of national and international energy concerns. How can an energy-hungry society meet its energy demands? How much dependence should there be on foreign oil from troubled regions? How do we balance the demand for energy with the desire and need to protect the environment?

The senators from Alaska are passionately in favor of drilling in the Arctic National Wildlife Refuge. Geologically speaking, the oil is there, and although the quantities are not clearly known, it is believed to be enough to reduce foreign need for a reasonable time. The technology to remove it with minimal impact exists. Notably, it would bring jobs and revenue to the people of Alaska. On the other hand, many folks have strong visceral feelings that a wildlife refuge should simply not be tampered with, especially when other sources of energy are available, and we have not yet done enough in the way of energy management and conservation. Senator Lieberman is among those and has even vowed to filibuster on the Senate floor if necessary to block the drilling in Alaska.

With regard to nuclear energy, the senators from Nevada are vehemently opposed to the disposal of high-level nuclear waste from all across the United States beneath Yucca Mountain. Their concern is the safety of the citizens of their state. There still remain some unanswered geologic questions. How much heat will the waste generate? How will the heat affect rock and water chemistry? Are the groundwater flow patterns clearly understood? Must we rely only on geologic containment or can we supplement that with engineered containment? And, there are concerns about safely transporting the waste across the country to the facility. These are only some of the many thorny issues.

Clearly, simple solutions to today’s energy concerns are not easy to find. Having been involved in the debate over disposal sites in crystalline rock in the east in the 1980s, and having watched the debate for disposal sites in the salt deposits of the Gulf Coast areas with interest, I recognize that we are running out of time. Storage space at some power plants will soon be filled, and the safety and security of so many temporary storage facilities across the country is questionable.

The brief discussions here do not begin to do justice to these difficult matters. By the time this article is published, the congressional votes will have been made and the die will be cast on some of the crucial energy issues facing this country. But this discussion does, at least, provide a sense of the day-to-day complexities of geology from the Hill.

Next time: the daily work of a congressional science fellow.
The GSA Committee on Professional Development invites those interested in proposing a short course to contact GSA headquarters for proposal guidelines. Courses may be conducted in conjunction with all GSA annual or section meetings. We are particularly interested in receiving course proposals that include a local field trip for the 2003 Seattle Annual Meeting or the 2004 Denver Annual Meeting.

Proposals must be received by December 1, 2002. Selection of courses for 2003 will be made by March 1, 2003. For those planning ahead, we will also consider courses for 2004 at that time.

For proposal guidelines or information, contact Edna Collis, Program Officer, GSA headquarters, 1-800-472-1988, ext. 1034, ecollis@geosociety.org.

Association of Engineering Geologists and American Institute of Professional Geologists

AEG-AIPG-2002

Peppermill Hotel - Reno, Nevada

September 22-29, 2002

"Gambling with Geologic Hazards"

Bring your spouse, your family, or a friend and enjoy all that we have to offer at the AEG-AIPG-2002 Joint Annual Meeting!

Technical Sessions will be offered September 25-27 (Wednesday-Friday), emphasizing environmental and engineering geology. Special symposia to be presented include: (1) Tunneling; (2) Addressing Hazardous Waste and Contamination Issues at Abandoned Mines in the Western United States; (3) Solving Real-World Problems with Geology and Geologic Maps; (4) The Future of Engineering Geology; (5) Landslides; (6) Evaluation of Earthquake Hazards; (7) Controversies in Mining Hydrology; (8) Quaternary Faulting; (9) Solid & Hazardous Waste; (10) Sustainable Development of Geological Resources; (11) Dealing with Nuclear Waste, Yucca Mountain; and (12) Sustainability of the Geological Profession and Yourself as a Geologist.

Short Courses include: (1) Rockware's Software; (2) BEST GeoSim: A Computer Simulator to Teach Site Investigation Skills; and (3) Environmental and Engineering Geology.

To acquaint you with Nevada, eight Field Trips are being offered for your enjoyment: (1) Yucca Mountain Proposed High-Level Nuclear Waste Repository, Las Vegas, NV; (2) Mining; (3) Genoa Fault and the Carson Range Frontal Fault Zone; (4) Mount Rose Fan, Quaternary and Holocene Faulting; (5) Steamboat Springs Geothermal Power Plant; (6) University of Nevada-Reno; (7) Geology & Geotechnical Engineering of the Virginia and Truckee (V&T) Railroad Reconstruction Project; and (8) Geology of Lake Tahoe.

For more information, contact:

Julie C. Keaton, AEG Meetings Manager at 909-337-0657 (aegjuliek@aol.com)

See AEG's Web Page: http://www.aegweb.org
New GSA Members

The following members were elected by GSA Council action at its April 2002 meeting for the period from October 2001 through March 2002.

Linah N. Ababneh
Jacobo Abati
Gamal Z. AbdelAal
Hans Abramson Ward
Aaron J. Adams
Jerry Adams
Rahadian Adhyakswan
Heather E. Adkins
Frank A. Aebly
Ramon Aquirre
Idika U. Agwu
Mobolaji O. Ajai
Guillermo L. Albanezi
David Otto Alderks
Wilma B. Aleman
Becky Alexander
David J. Allen
Leslie D. Almberg
Mark A. Altabet
Paula R. Alves
Illa Lyn Amerson
Monique Ammident
Ariel D. Anbar
Andreas Jerry Andersson
James R. Armstrong
Leslie E. Arnold
Ramon Arrowsmith
Nancy Arruda
Brooke Ashbury
Todd Aseltyne
Eugenio Asencio
Ali Assar
Reene L. Aubry
Amanda Lynn Ault
Michael F. Auman
Matthew G. Avenill
Dale W. Avery
Nora Foley Ayuso
Richard H. Bailey
Peter W. Baillie
Daniel J. Bain
Austin K. Baldwin
Jeff Bandow
Betsy Rose-Mureen Bandy
Carlos M. Baquero
Jonathan R. Barbou
Carly R. Barnett
Mary L. Barrett
Cynthia Barton
Michael Barton
James E. Baskin
Nathanial B. Beal
Christine Bean
Tyler W. Beatty
Brett Beaulieu
Debra K. Beck
John H. Beck
Jens K. Becker
Stephanie Beda
Jared M. Beeton
Ram Ben-David
George L. Bennett
Jeffery B. Bennett
Ryan Todd Bennett
Melody Bergeron
Daniel C. Berman
Adrian Berry
James M. Berry
Kate Meadows Berti
Gunars Berzins
Mark P. Betts
Michael J. Bevan
Kenneth A. Bevis
Steve Ray Bever
James Bishop
Natanya M. Black
Robert E. Blackett
Tara Jo Blackwell
Adriana P. Blesa
Karin A. Block
Raleigh D. Blumstein
Regina Bochicchio
Katherine J.E. Boggs
Kevin M. Bohacs
Maurizio Bonardi
John A. Bonita
Scott Borchards
Robert Anthony Bosaz
Sweta Bose
Alan J. Bourgault
Warren R. Bradford
Shailaja R. Brady
Leslie Braverman
John Breier
Arjan G. Bren
Jordon Brix
Jonathan W. Brixton
Nicolos O. Briste:
Jochen J. Brocks
Brenda L. Brown
D. Ann Brown
David J. Brown
Kevin D. Brown
Ronald Brown
Todd C. Brown
Quentin J. Browne
Sandra G. Bruce
Andrew Brunening
Ernest B. Brunson
Elizabeth M. Bryant
David G. Buck
Benjamin N. Burnett
Bethany Janet Burnett
Erik W. Burtis
Seth A. Busetti
Noel Bush
Dave T. Butler
Thomas W. Butler II
Richard J. Calnan
Christina L. Calvin
Paul R. Cameron
Matthew A. Campbell
Kathryn Lorna Canner
Ana Maria Carmo
Toni O. Carrier
Sid Carter
Stephanie S. Carter
Spring M. Carty
John F. Casey
Sherby Cave
Jennifer L. Cavin
Zhaoxian Chang
Karoun Charkoudian
Craig Chase
Kathleen R. Chase
Joshua Chastain
Meeten J. Chauhan
Hui-Hsuan Chen
Rou-Fei Chen
Gabrielle C. Chianese
Kyu Ho Cho
John Chow
George J. Christodoulou
Sheila E. Christopher
Rick Civelli
Scott K. Clark
Kimberly M. Clarke
Steven E. Clarke
Ben Clausen
Natalia Lee Cleveland
Avery Cohn
Frederick Walter Colcombe
Jennifer Margaret Cole
Dawn M. Coleman
Brian Collins
Mathias J. Collins
Claire A. Condie
Alan Condron
Jeffrey D. Constable
Gennam Conte
Trevor A. Contrens
Brian Stephens Cook
Kevin Cooney
Dan Core
Mark E. Corell
David A. Cornell
Gregory M. Conson
Matt Cotton
Rory D. Cottrell
Moise Coulombe-Pontbriand
Alan B. Coulson
Ronadh Cox
William H. Crane
Bradley A. Crenshaw
James E. Critch
John S. Crockett
Gareth E. Cross
Robb H. Crowder
Charles R. Cullom
Joni Marie Culppeper
Michael J. Cunningham
Erica L. Cuerdo
Alison Cuyle
Adalberto da Silva
Adejarto Francisco
Da Silva Filho
Zhemue Xai
Cory T. Dalton
Brent J. Dalzell
Neil Daniell
Eric Dano
Beshmi Das
Benjamin F. Dattilo
Garry J. Davidson
Michael T. Davies
Adam Mark Davis
Nicole K. Davis
Paul D. Day
Katherine Dayem
Jelle de Boer
Joseph de Vera
Robert L. Dean III
Katya M. Delak
Nicholas J. Delillo
James Michael Desmond
Duane E. Devicchio
Stephen B. Devogel
Gerald R. Dickens
Pamela J. Dickinson
Benjamin Roth Diemer
Erica DiFilippo
Peter Dillett
Richard M. Dilhoff
Katherine DiNovo
Michael A. Dinsmore
Andrea Norma Dion
Amanda A. DiUlio
Margaret E. Dodds
Michele C. Dodge
Sean R. Dolan
H. Dean Dougherty
Jon K. Doxey
Anna C. Draa
William R. Drake
Jennifer Melissa Drake
Michael S. Droz
Peter Alexander Druschke
Mark C. Duffy
Phillip B. Duncan
Leandro E. Echavarria
Ben Edwards
Ursula Edwards-Howells
Robert B. Eidson
Erik Ekdahl
Jonathan A.L. Elagio
Emily Elliott
Virginia L. Elswick
The following people affiliated with GSA as Student Associates between October 2001 and March 2002.

Thomas L. Adams
Laura Allen
Jeffrey S. Alley
John M. Allen
Douglas B. Amburn
Erika Amir-Denton
Arlene M. Anderson
Jonathan Antia
Sven Arnott
James D. Asher Jr.
Sara Elizabeth Austin
Bria M. Backhaus
Janet E. Bader
Clintong C. Bailey
Jake Bailey
Victoria N. Balfour
Eileen A. Bandarin
Victoria N. Balfour
Jake Bailey
Brandon Joseph Bates
Carl T. Bauer
Lisa A. Beale
Steven Joel Beardsley
Amanda L. Benedict
Marc A. Bieler
Anne Covault
Debra C. Ducotey
Allison Duchateau
Briana D. Duford
Jessica Drees
John E. Dreyer
Sandy Duong
Matt E. Dupree
Kuwanna Dyer
Kevin C. Edgar
Richard D. Eagle
Ryan J. Earley
Sean P. Ellison
Ryan A. English
Leah I. Engström
Travis Ermey
Tzvetina V. Emrino
Joel J. Fassbinder
Christopher R. Faulkner
Jonathan A. Faulkner
Paul R. Ferguson
Jennifer Marie Fimbres
Craig R. Fisher
Cheryl A. Foley
William R. Fonini
James E. Ford
Karolín M. Ford
Tom Fournier
Julia Michelle Frazier
Justin C. Frieberg
Tiffany E. Friedel
Lauren M. Fuqua
Kimberly A. Gallagher
Parham Perkins Gardner
Robert L. Garfield
Alfred Garraff
Sarah E. Gately
Evan J. Gear
Jeffrey A. Gillis
Glen D. Golden
Angel L. Gonzalez
Dustin M. Graves
Paula A. Gray
Matthew T. Grizzell
Amy Louise Gross
Mark Grzovic
Anthony J. Guarino
Julia Kristen Haas
Leandro Helal Habib
Catherine C. Hafner
Jeanette Hagan
Jerome M. Hall
Jonathan Trent Hall
Benjamin W. Hallett
Ian Hamelin
Anne K. Hamilton
Ryan Bernard Hammes
Stephanie A. Haney
Victoria L. Hanson
Michelle L. Harber
Aigal Harris
Austin C. Harrison
Brett N. Harvey
Olubasosun A. Hassan
Daniel Wayne Hatcher
Laurence A. Hawkes
Neal Curtis Heathwol
Kristin T. Held
Mark A. Heller
Joseph R. Hennessey
Thomas A. Henson
Sarah E. Hespanhall
Christopher Hepler
Mary F. Hernandez
David Aaron Hill
Stephanie M. Hickey
Catherine Hoefert
Michael B. Hoenerhoff
Christina Marie Hoff
Jeff A. Hoffman
Jenna M. Hoffman
Adam J. Hollembach
Christina M. Holtzinger
Sheryl L. Horstman
Steven A. Hubbs
Ryan Huggins
Jennifer M. Hunt
Kasey J. Hutchinson
Patricia E. Iott
Randall D. Irms
William D. James
Kimberly A. Jennings
Adam Douglas Jew
Bob Jewell
Catherine Johnson
Matthew E. Johnson
Susan P. Johnson
Vena L. Jones
Ramona Colette Jospecky
Brett A. Juntras
Bertine Kabelis
Kathleen S. Karambela
Wendy J. Kastner
Amber D. Kaup
Sarah M. Kaufmann
Trisha A. Keating
Sasha L. Kelly
Andrew P. Kent
Richard E. Kilby
Evelyn Kim
Jesse B. Kimball
Paul H. Klos
Brad A. Knisley
Katherine Lee Knox
George C. Koteas
Petros D. Koutouvis
Ryan J. Kowalski
Lisa J. Krain
Karen Ann Krajene
Friedrich J. Krambs
Gretchen L. Knapp
Vaugn A. Kushner
Paul P. Kuvelis
Jennifer I. Kuykendall
Jennifer Kyle
Heather G. Lackey
Marshall Lake
Kenneth P. Lamkin
Elizabeth Landau
Gabe A. Landes
Levi C. Langevin
Christopher Lanteigne
Alexandra Larson
David B. Lasits
Jeffrey S. Latham
Donald M. Latham II
Jeremy W. Laucks
C. Gordon Layfield
James A. Leavitt
Rachel J. Lee
Dennis Leikam
Gareth G. Leonard
Jill Leonard
Caleb W. Lewis
Phyllis K. Lewis
Gloria A. Linder
James Lisk
John Loveless
Michael P. Lucas
Jonathan S. MacDonald
David M. Mack
Craig Maior
Amanda L. Malaney
Christine Malinowski
Joseph D. Malkovich
Thomas A. Mando Jr.
Andrea S. Martin
Dan H. Martin
Amy C. Martinez
Diane Mason
Gary M. Mason
Joy M. Matox
Jesse Maury
Matthew Scott Mayry
Paige Marie McClanahan
Kathy A. McDaniel
Scott F. McDonald
Conor C. McDonough
Mark R. McGowan
Devon Ford McPhillips
V. Lynn Means
Robert J. Mehler
Christopher E. Mendonca
Susan M. Mentzer
Meghan Abend-Powers Meyer
Heather M. Michael
Lila Middleton
Emily Marie Miller
Jennifer J. Milliken
J. Jesse Minor
Erin E. Minster
Christine Mintner
Greg W. Mistle
Martha A. Mitchell
Justin Moeller
Ethan E. Morin
Catherine E. Moses
Aleshia M. Mueller
Jeffrey Murray
Lyndsey Lynn Needham
Jonathan E. Newby
Trent T. Newkirk
Jonathan E. Nichols
Julie A. Nico
Sarah K. Nogule
Kevin Nohejl
Chellie F. Nords
Melissa L. Northcott
Lori K. Norton
Timothy J. Nowak
Robyn M. Nutall
Shauna H. Nyborg
Jennifer A. Oblinger
Bridgid Clarke O'Connor
Diana Ondruck
Caroline Ohebsian
Olajide H. Oladimeji
Diane S. Oliveira
Gayle Anthony Ordway
Taryn Michele Ortoli
Suzanne N. Osborne
Mark L. Ost
Uchebuike B. Osumawu
Nicole A. Ouellette
Himansu H. Patel
Kerry A. Paul
Iftach J. Pearlman
Cate E. Pelech
Daniel J. Peppe
Tracy Perkins
Amanda L. Perrigue
Elizabeth M. Pietro
Bonnie J. Pickering
Kevin Pocquette
Dean Podolsky
Kathleen R. Poole
Matthew T. Poole
Courtney A. Porroca
Kate E. Poulter
Charles A. Preppernau
Adam L. Price
Ryan Prime
Ian S. Pryor
Tammy M. Pryor
Alma D. Quezada
Elizabeth J. Quinn
Martsa Ranieri
Justin W. Rathman
Antoinette J. Reale
Dan Redell
Matt Reiter
Shannon N. Remley
Alexander P. Renfro
Amy Rhine
James Rice
Sarah M. Rice
Andrew Rich
Deanne Elizabeth Rider
Katharine A. Robertson
Eric D. Robinson
Tiana Robinson
Jesse J. Roehrich
Diane A. Rogers
Alex M. Rosenberg
David Frederick Rush
Corey Runge
Daniel M. Rusotto
Jonathan C. Russey
Ginny Lois Rust
Joanna D. Sanchez
Jean C. Sanford
Kenan D. Sarratt
Ryan P. Sauter
Katharine Sayre
Ashleigh N. Schafer
Anne Marie Scherer
Cara Schiek
Caleb Joseph Schiff
Alexa T. Schirtzinger
Peter J. Schmitz
Gary Schneider
Joanna L. Schneider
Lisa L. Schultz
Susan Schultz
Valerie Schultz
Terence Christopher Schwarz
Theresa A. Senart
Eric Senecal
Joseph J. Sertich
Roy Sexton
Kristen Jane Shearer
Timothy Shepard
Scott A. Shiflet
Aaron L. Shultis
Robert Silverman
Scott P. Singley
Anne M. Skatvold
Michael P. Slatery
Stephen L. Slaughter
Nancy J.B. Sloan
Isaac J. Smith
Kiel Taylor Smith
Robin Sue Smith
Rachel E. Sornuf
Elizabeth Ann Soulieny
Kate Spowder
Demmy Spowins
Clare E. Steedman
Kelley Steffen
Stephan A. Steiner
Allison E. Stephenson
Jeffery D. Stepp
Mervin A. Stevenson
John J. Stewart
George N. Stiff
Michael Silwell
Kyle M. Straub
Josiah Strauss
Sarah Strauss
Stephen L. Strauss
Alexander Brian Strouth
Phil Szymcek
Kathryn L. Tamulonis
Evan T. Teeters
Leigh W. Thompson
Lisa Thompson
Michael Thompson
Ruth F. Thompson
Amanda G. Thomson
Robert S. Tidmore
David K. Tidwell
Tamara J. Traxler
Robert W. Turnquist
Heather A. Van Griethusen
Katie J. Van Horn
Lisa Michele Van Patten
Don Vassey
Christy C. Visaggi
Karen M. Vito
Susan Warnstein
Kendal C. Wiggles
Amanda Wallace
Marie E. Walker
Benjamin Harvey Walls
Melinda K. Wamsley
Caroline N. Wannamaker
Gibran D. Washington
Matthew S. Wasson
Noah G. Weber
Aubrey Weese
Ethan Weikel
William J. Weiss
Stephen A. Welch
Jennifer Wellner
Zachary R. Wessel
Marta K. Westerfield
Kelly A. Weyer
Sarah F. Whiting
Tracy Wiggins
Bethany W. Wilcox
Bryce Willems
Matthew J. Williams
Andrew Wilson
Laura Elizabeth Wilson
Sara Joy Wilson
Brent W. Wimmer
Nathan D. Winters
Neil Wolfe
Nicholas J. Wolfe
Amanda L. Wolters
Kaitlyn S. Young
Heather Young
Bryan A. York
Robert E. Wright
Alberta A. York
Heather Young
Brian P. York
Christopher E. Wright
Ana L. York
Kaitlyn S. Young
Joseph J. Zahniser
Andrew Zaprzal
2002

August 21–23

August 26–29

September 9–13

October 28–30

November 10–14

December 6–10

2003

February 3–9
- **8th International Congress on Pacific Neogene Stratigraphy**, Chiang Mai, Thailand. Information: Prof. B. Ratanasthien, Dept. of Geological Sciences, Chiang Mai University, Chiang Mai 50200, Thailand, benjavun@geo.l.science.cmu.ac.th.

April 7–11

August 26–30

November 2–6

About People

AGI Releases Geoscience Department Status Report

The American Geological Institute (AGI) has released the 2001 Report on the Status of Academic Geoscience Departments, which describes and analyzes enrollments, employment trends of recent graduates, faculty demographics, and other department characteristics at degree-granting geoscience departments in the United States.

The report is the result of AGI's comprehensive survey of more than 700 geoscience departments in the United States in 2001. “Close inspection of the findings presented in the 2001 Report reveals many of the factors—and uncertainties—that have a bearing on the future of the geoscience profession,” commented AGI Executive Director Marcus E. Milling.

continued on p. 27
continued from p. 26

The 2001 Report focuses on geoscience enrollments and degrees granted, employment trends of recent graduates, faculty ranks, faculty teaching specialties, geoscience theses and dissertation topics, research funding support, and geoscience employment by employer category, age, and gender.

The free 12-page report is available online in PDF format at www.agiweb.org/career/rdad2001.pdf. Also available for free (at http://guide.agiweb.org) are AGI's two companion online publications, the Guide to Geoscience Departments and the Guide to Geoscience Careers and Employers.

Fulbright Scholar Grants Offered

The Fulbright Scholar Program is offering nine lecturing, research, and lecturing-research awards in geology for the 2003–2004 academic year. Awards for both faculty and professionals range from two months to an academic year.

While many awards specify project and host institution, there are a number of open “any field” awards that allow candidates to propose their own project and determine their host institution affiliation. Foreign language skills are needed in some countries, but most Fulbright lecturing assignments are in English.

National Academy of Sciences
Call for Nominations

The National Academy of Sciences is accepting nominations for the Mary Clark Thompson Medal, a $15,000 prize given every three years to recognize important service to geology and paleontology. There are no age or nationality restrictions.

Nominations will be accepted through September 6, 2002. For more information, contact: National Academy of Sciences, Awards Program, Room 146, 2001 Wisconsin Avenue, NW, Washington, D.C. 20007, (202) 334-1602, fax 202-334-1255, awards@nas.edu, http://nas.edu/nas/awards.

BOOK REVIEW

Accretion of Extraterrestrial Matter Throughout Earth’s History

Good morning. This is your wakeup call. Have you realized that you live on a planet careening through the debris generated by an ongoing 4.5-billion-year-old demolition derby? Did you know that during the 8 hours you slept, about 40 tons of material accumulated on your planet, much (but not all) of it too small to see? Not worth much thought? Relax. Sleep as soundly as a dinosaur...

Geologists have a fondness for processes that proceed at measurable rates, and for extrapolating those processes to reveal their historical influence on our planet. It’s only recently that we’ve treated accretion as one of these processes, and our increased awareness of the sometimes not-so-gentle rain of extraterrestrial material encountering Earth has been of great benefit. Large impact events, once lionized by mainstream geologists as baneful and improbable catastrophes, are now used as powerful stratigraphic tools. Smaller objects (meteors) that survive impact material encountering Earth has been of great benefit. Large impact events, once lionized by mainstream geologists as baneful and improbable catastrophes, are now used as powerful stratigraphic tools. Smaller objects (meteors) that survive an encounter with our planet have become our most important source of information on the materials that make up the solar system and its earliest history. And even smaller objects, some nanometers across, may influence the composition and climate of our planet in dramatic ways. In their book, Peucker-Ehrenbrink and Schmitz have done a good job of portraying the importance and constant influence of ongoing accretion, with various authors covering topics that range across nearly 50 orders of magnitude of mass and distance.

In broad terms, the 22 chapters cover delivery mechanisms for dust from various solar-system sources; interactions of dust-sized particles with Earth; their effect on atmospheric and sediment chemistry, and their possible effect on climate; the recovery and recognition of accreted materials and their use in determining influx rates; and the longer term record of accretion found within terrestrial and lunar deposits. Speaking as someone who works on a few disparate parts of this incredible spectrum, I can say this book serves a wonderful purpose; it brings together topics that are all clearly related yet rarely discussed in a unified manner.

The book is not without its flaws, most of which I will attribute to the editors’ desire to be inclusive. A few of the chapters focus on pet theories, obviously dear to the authors but less obviously embraced by the larger planetary community. Experienced readers will recognize these; hopefully, novices will not be misled. Some confusion also comes from a general lack of uniformity among the chapters; various authors use different baseline references as starting points, which leads to a few apparent (but not fatal) conflicts between interpretations. There are also a fair number of obvious proofreading mistakes, such as incomplete sentences and misspellings. But all in all, this is an exceptionally useful book, gathering together topics that have too often been treated in isolation.

Ralph Harvey
Case Western Reserve University, Cleveland, Ohio
George C. Sharp has accepted a five-year appointment to the Foundation’s Board of Trustees. Born in 1944, Sharp grew up in Portland, Oregon. He received B.S. degrees in geology (1967) and math (1968) and an M.S. degree in geology (1969)—all from Oregon State University. He served as an exploration geologist with the Shell Oil Company from 1969 to 1973 in Denver, Colorado, and in Midland and Houston, Texas. Sharp moved to the Tenneco Oil Company where he served from 1973 to 1977 as the Rocky Mountain Division geologist while managing geologic oil and gas exploration for the company in the Rocky Mountains. In 1977, he joined the Weyerhaeuser Company in Tacoma, Washington, where he was director of mineral resources until he retired after 25 years. Sharp managed all aspects of mining, oil, and gas, and geologic hazards, including exploration, development, production, and sales and acquisitions for approximately 7 million net mineral acres of Weyerhaeuser timberlands in the United States and Canada.

In addition to his membership in and activities on behalf of GSA, Sharp is a member of the American Association of Petroleum Geologists (AAPG) and is currently a trustee for the AAPG Foundation. He has served on the board of directors of the Northwest Mining Association and Northwest Energy Association, and is a member of the Rocky Mountain Association of Geologists, the Rocky Mountain Mineral Law Foundation, and the American Association of Mineral Owners. Sharp is registered as a professional geologist in Arkansas and Oregon.

Once again we have attracted a person to the Foundation’s Board of Trustees who has a remarkable record of service and experience. The Foundation and Society are very fortunate to be served by someone with Sharp’s stature, energy, and dedication.

Most memorable early geologic experience

Thanks to the invitation of Dr. Philip H. Abelson, I could learn geochronology at the Carnegie Institution in Washington—this was the basis for my later work.

—Emilie Jager

Enclosed is my contribution in the amount of $____________.

Please credit my contribution for the:

- Greatest need
- Other: _________________ Fund
- I have named GSA Foundation in my will.

PLEASE PRINT

Name __

Address __

City/State/ZIP ___

Phone __

GSA Foundation

3300 Penrose Place, P.O. Box 9140

Boulder, CO 80301-9140 (303) 357-1054
drussell@geosociety.org

JULY 2002, GSA TODAY
Journal Highlights

In July Geology
Residence in the briny deep
Cretaceous greenhouse under glass
Three tiers for Ediacara!
Warming to a cool paradox

In July GSA Bulletin
Exposure and erosion history of Australian bedrock landforms

THE GEOLOGICAL SOCIETY OF AMERICA

To subscribe, contact member@geosociety.org
1-888-443-4472, or (303) 447-2020.
Visit our online journals at www.gsajournals.org.

NEW
at the GSA Bookstore!

ANCIENT SEISMITES

Edited by Frank R. Ettensohn,
Nicholas Rast, and Carlton E. Brett

Soft-sediment deformation abounds in the stratigraphic record of all periods, yet comparatively little attention has been given to the possibility of seismogenic origin for this deformation, especially in older pre-Quaternary parts of the record. Hence, this book is concerned with the sedimentological phenomena generated by earthquakes or tsunamis, but particularly focuses on types of soft-sediment deformation, loosely known as seismites, based on the assumption that they were triggered by seismic shocks or related tsunamis. Using more recent examples as analogs, chapters in this book cover the preeminent characteristics of seismites and how these characteristics are used to interpret possible seismites in older Phanerozoic rocks in more distal, commonly marine, intraplate settings. In fact, a particular focus is provided by the widespread development of these structures in the interiors of continents at a distance from marginal, orogenic belts. Additional emphasis has resulted not only in the description of seismogenic sedimentary structures, but also in the elucidation of physical processes involved in their formation. Examples, mainly from the U.S. interior but also from parts of Europe, are discussed.

ISBN 0-8137-2359-0, 190 p., softcover
$72.00, Member price $57.60
Situations Wanted

Ph.D. in geology/paleontology w/5+ years exper in sci- ence research, oil industry, grad & undergrad teaching. Field experience in North America, Europe, Greenland, Biling- ual, published. Want to again be a geologist in USA. Willing to relocate. Contact (303) 278-3461.

Positions Open

WASHINGTON AND LEE UNIVERSITY
Tenure track position starting fall 2003. The Geology Department at Washington and Lee University seeks applicants in any specialty complementing our current faculty, with teaching interests in Sed/Strat and Historical Geology. W&L is a nationally ranked, highly selective lib- eral arts college. Our department (geology.wlu.edu) is a member of the Keck Geology Consortium and is ideally situated for field studies in the Valley and Ridge of south- western Virginia. We seek a colleague who is dedicated to diverse teaching approaches, interested in making the most of our field setting, committed to collaborative undergraduate research, and enthusiastic about teaching intensive major/minor/major field geology courses during spring term. A resume, statements of teaching interests/experience and research interests, and 3 letters of reference should be sent by Sept. 1, 2002 to David Harbor (harbor@d.wlu.edu), Geology Department, Wash- ington and Lee University, Lexington, VA 24450. We encourage women and minority candidates to apply.

STATE GEOLOGIST OF ALABAMA
The President of the University of Alabama, the appoint- ing authority, invites nominations and applications for the position of State Geologist of Alabama. In addition to proven administrative ability, candidates should have an educational background in geology or closely related earth science disciplines and substantial experience in some phase of geology and petroleum exploration and/or production. Because the Geological Survey of Alabama has a significant research emphasis, preference will be given to candidates with a Ph.D. in geology or a closely related earth science discipline.

The State Geologist is Director of the Geological Sur- vey and also serves as State Oil and Gas Supervisor and Secretary of the State Oil and Gas Board. The total cur- rent combined budget is approximately $6 million with a staff of 86.

The salary is negotiable. Nominations and letters of application (including resumes) should be sent before August 1, 2002, to: Charles D. Haynes, Chairman, Search Committee, State Geologist, P.O. Box 87020, Tuscaloosa, AL 35487-0205, or e-mail to: stategeologistsearch@gsa.state.al.us.

Electronic correspondence is preferred but not required.

For more details on this position, visit the Web site at http://www.gsa.state.al.us or http://www.overflow.state.al.us.

The Geological Survey/State Oil and Gas Board of Alabama is an Affirmative Action/Equal Opportunity Employer.

TECTONIC GEODESY
UNIVERSITY OF CALIFORNIA AT SANTA BARBARA
The Department of Geosciences at the University of California at Santa Barbara invites applications for a tenure-track position at the assistant professor level in Tectonic Geodesy for an appointment to begin July 1, 2003. We seek a broadly trained geoscientist who utilizes geodesy (primarily GPS and interferometry) for creative research in the fields of quantitative crustal deformation, plate tectonics, and/or surface processes. Individuals with additional expertise in numerical modeling or field geology especially encouraged to apply. The successful appli- can should complement departmental strengths in struc- tural geology, tectonics, seismology, and surface pro- cesses. The appointee to this position will teach both undergraduate and graduate courses and is expected to maintain a vigorous, externally funded research program. A Ph.D. is required at the time of appointment. The deadline for applications is September 1, 2002. Applic- ants should submit a letter of application, curriculum vita, and description of teaching and research objectives and accomplishments. Applicants should request that three referees send letters of evaluation directly to the search committee by the September deadline. Applicants should also provide the names, e-mail addresses, and contact information of those referees. All materials should be sent to: Geodesy Search Committee, Department of Geosciences, University of California, Santa Bar- bara, CA 93106-9630.

UCSB is an Equal Opportunity/Affirmative Action employer.

ENVIRONMENTAL GEOLOGIST, LANDER UNIVERSITY
Environmental Geologist: Assistant Professor—August 2002. Teach physical and environmental geology, envi- ronmental/physical science, and hydrogeology; coordi- nate undergraduate ES degree program and direct under- graduate research. This is a one-year position. Person hired may apply for tenure-track position available August 2003. Application infor- mation and complete job description may be obtained at http://lander.edu/science/jobs.html AA/EOE.

Opportunities for Students

Attention students! Looking for a job or an internship? Then join us in Houston for the 5th Annual National AAPG/SEG Student Expo on October 20–21, 2002! The Expo is a great opportunity for students to meet with re- presentatives from oil and gas and environmental compa- nies, some of which recruit only at the Expo. Students will have the chance to showcase their research in a poster session and network with potential employers. Successful job searches result from the Expo every year. And we use this opportunity to explore Houston, a vibrant city, an oil capital, and home to the largest geoscientist population in the world! Contact Kerri Donathan at AAPG for more informa- tion (kdonathan@aapg.org).

TRAVEL MAPS—The world’s largest online map catalog. Featuring city maps, topographic maps and digital maps worldwide. Call (336) 227-8300 or visit: www.omnimap.com.

RECENT, RARE, AND OUT-OF-PRINT BOOKS. We purchase single books and complete collec- tions. Find our catalog at http://home.earthlink.net/~msbooks for books on Geology, Paleontology, Mining History U.S. & International, Ore Deposits, USGS, Petroleum, Coal; e-mail: mbooks@earthlink.net; MS Book and Mineral Company, P.O. Box 6774, Lake Charles, LA 70606-6774.

MINERAL SPECIMENS FOR RESEARCH, EDUCATION, AND FOR MINERAL COLLECTIONS. Our website at www.mineralminers.com displays thousands of photographs of unique mineral specimens and images of the world of mineral collections. Applications to be e-submissions; a one-page ab- stract (Times New Roman, 12 point font, Title upper case/bold for headings) about priorities in the Solid Earth Sciences and the area(s) in which the applicant can best contribute. All applicants will be in- formed of the outcome of their application by August 30, 2002.
Call for Applications and Nominations for GSA Bulletin Editor

The GSA Bulletin seeks a co-editor, beginning January 1, 2003. The new editor will replace the editor whose term ends in 2002 and will serve a four-year term. A phased transition should begin in autumn of 2002.

GSA will provide a half-time assistant, pay the costs of maintaining an editorial office, and reimburse journal-related travel expense. Discretionary funds are also available.

The GSA Bulletin has a 114-year history of excellence in publication of definitive works related to all aspects of geoscience. Part of GSA’s mission is to bring together different earth sciences in a forum for scientific inquiry and discussion, and the Bulletin editors are charged with continuing this tradition while helping Society staff find the best ways to provide comprehensive manuscripts in the electronic environment.

Editor Duties

1. Continue to maintain excellence of journal content through active solicitation of diverse and definitive manuscripts.

2. Support GSA’s efforts to process and publish Bulletin manuscripts on the internet.

3. Ensure stringent peer review and expeditious processing of manuscripts.

4. Make final acceptance or rejection decisions after consideration of recommendations of reviewers and Associate Editors.

5. Correspond with authors regarding revisions and expeditious return of final manuscripts. Maintain active correspondence with current and potential contributors.

6. Select and maintain an active board of Associate Editors.

7. Report to the Committee on Publications on manuscript topic trends and issues specific to the Bulletin.

Editor Qualities

1. Broad personal background and active research in the geological sciences. Broad knowledge of geological research activities of scientists both nationally and internationally.

2. Interest in electronic publishing and in maximizing Bulletin content for print and electronic media.

3. Willingness to try new techniques to enhance author and reader satisfaction.

4. Excellent organizational skills and ability to manage significant manuscript flow to ensure timely publication of papers. Ability to supervise editorial assistant to ensure that schedules are maintained.

5. Ability to remain tactful and helpful to authors, yet create and maintain stringent acceptance and rejection policies.

6. Willingness and capability to coordinate working schedules with a co-editor.

7. Willingness to invest about one day per week on Bulletin-related activities.

8. Objectivity and scientific maturity.

If you are interested in this opportunity to help guide the Bulletin, one of the premier geoscience journals, submit a resume and a brief letter describing relevant qualifications, experience, and objectives. If you are nominating someone, include a letter of nomination and the nominee’s written permission and resume. Send nominations and applications to Jon Olsen, Director of Publications, Geological Society of America, P.O. Box 9140, Boulder, CO 80301 by August 31, 2002.