Don Colquhoun was a pioneer in coastal stratigraphy and exploration of it, specifically in South Carolina, and more generally on a global basis, for he was a long-time, valued member of the Shorelines Commission of the International Union for Quaternary Research, an endeavor that brought him world-wide experience and friendship.

Don was born in Toronto, Canada, to Margaret (née Black) and George Miller Colquhoun. His basic education was in the Toronto Public School system and secondary at the University of Toronto schools (for the academically gifted). His bachelor’s and M.A. degrees were from the University of Toronto (1953–1956), where he also played water polo and made the first team. He earned a Ph.D. (1960) from the University of Illinois (Urbana) with a dissertation on Triassic stratigraphy in western Canada.

While in college he found summer employment (1952–1956) with Gulf Exploration Company (Pittsburgh), the Newfoundland survey (St. Johns), Shell Oil, and later Imperial Oil (Exxon, Calgary). Field work with the latter took him to Quebec, Labrador, northern Ontario, Alberta, and the Yukon Territory. From 1956 to 1958 he was a research micropaleontologist working with Imperial Oil Exploration and Research Division on the stratigraphy of the western Canada Basin sections of the Cretaceous back to the Cambrian, as well as in the Williston Basin. This background in stratigraphy and micropaleontology with the oil companies was to provide a basic experience and orientation that was immensely valuable in Don’s future career.

Don married (in Toronto, May 19, 1956) Betty Evelyn Imray of Toronto, and they had two sons, Stephen (1960) and Michael (1962), and eventually two grandchildren. For 43 years Betty was his constant helpmate and often shared his adventures, at home and overseas.

In 1960, Don was appointed to the Department of Geological Sciences at the University of South Carolina (in Columbia), where he was an assistant professor (1960–1965) and then an associate professor, and became a full professor in 1968, a position he held until his retirement and appointment as a distinguished professor emeritus (1997). He served as chairman of the department from 1969 to 1973. With the state government in South Carolina, Don served with the state geologist on the Stratigraphic Subcommittee and with the Stratigraphic-Hydrologic Subcommittee (1984-1991). With the federal government, he served as a member of the USGS working group on Quaternary maps (1977–1985) and as chapter leader of the GSA Decade of North American Geology (DNAG) group on Nonglacial Quaternary of the East Coast (DNAG volume K-4, 1986–1991). He also worked on the DNAG E-5 regional cross section, Atlantic coast, and with the DNAG group on geoarcheology.

Don's international service began essentially with a sabbatical in 1974 that took him to Uppsala University in Sweden. He visited many parts of Sweden, acquired a working knowledge of the language, and enjoyed the hospitality of Lars Königsson, the director of the Quaternary Institute in Uppsala. Don's subsurface exploration of the coastal plain of the Carolinas had
convinced him of the paleoecologic sequence idea for the Quaternary formations that show a
minute interfingering of marine and continental facies. Now he had the experience of seeing this
oscillation within the Holocene, but largely exposed above sea level because of the glacioiso-
static rebound of Scandinavia. The Uppsala region is still rising at about 5 mm/yr, so that one
can see Viking boat ramps in places above the old shorelines.

Don carried this information back to South Carolina and focused his attention on the past
7000 years or so. In South Carolina, however, the slow submergence meant that the different
levels had to be identified by extensive—and exhausting—drilling. Perspiration in the heat,
humidity, and insects of the Carolinian summers was to be the reward for this phase.

Don also learned how beneficial it can be to cooperate with the paleoecologists and archae-
ologists. Ancient Indian shell middens make just as good stratigraphic markers as fossiliferous
horizons. All this is set against a fluctuating background of eustatic sea-level changes. Recogni-
tion of the various indicators enabled him to construct a picture of changing and fluctuating
environments, through aridity to savanna, to the present (“mesic-hydric”) coastal wetlands. His
collaborators, M.J. Brooks, J.G. Brown, and P.A. Stone, all played a part. This was indeed a
team operation, with Don as the ever-energetic and inspiring leader.

In 1974, Don was made secretary and from 1977 to 1982 was president of the Commission
on Quaternary Shorelines of the International Union for Quaternary Research (INQUA); these
duties involved meetings and correspondence with specialists all over the world. The commis-
sion had been gradually expanded to include regional subcommissions, which organized field
trips and gatherings in the remotest places. Linguistically, Don was aided by his fluency in
French, as well as a working knowledge of Latin, German, Italian, Spanish, and Swedish.

For the 10th INQUA congress (held every four years in different places; this time in Birm-
ingham, UK), Don was one of the official U.S. delegates. As an international union, INQUA is
part of the ICSU, supported financially by UNESCO, which sponsors the International Geologi-
cal Correlation Program. For Project 61, Sea Level Change, 1975–1981, led by Arthur Bloom of
Cornell, Don became an ex-officio member through his INQUA Shorelines presidency. After four
years, their work was amalgamated by Bloom into an “atlas” of sea-level curves that included
Don's major contribution with the South Carolina example, which was supported by a large num-er of radiocarbon dates. I recall a memorable moment when Don telephoned me: “Rhodes, I've
just got a new date; it's right on your curve!” Although many people hated it, Don's impressive
support gradually led to acceptance of the Fairbridge curve, his “eponymous paradigm.”

The importance of the Colquhoun sea-level curve far transcended its regional setting in the
Carolinas because it demonstrated a fluctuating Holocene sea level in a rather stable (slightly
submergent) crustal sector and had oscillations that tied in to climate changes and early Indian
cultural history. This model was in direct opposition to the “standard” sea-level curve and cli-
matic picture for the eastern United States (the smooth, rising curve of F.P. Shepard). The
Colquhoun-Fairbridge oscillating curve was in due course followed, and confirmed, by work in
western Florida (Karen Walker; Frank Stapor). In a review of the coastal history of the entire
United States, I traced this picture (Fairbridge, 1992) of pulsating climate cycles and concomi-
tant sea-level changes all the way to the Gulf of California and the Arctic coast of Alaska, where
it linked up with similar evidence from the Canadian Arctic (Fairbridge and Hillaire-Marcel,
1977). On an INQUA trip to the eastern Hudson Bay in 1980, Don and I were able to observe
that each of the cycles of emerged beach ridges constituted a mini-cyclothem, where the highest
point in each ridge was marked by the coarsest gravels (warmest ice-free summers with
strongest wave action), grading down to the finest in the swales (cold phases, polar easterly
winds, and minimum ice-free interludes).
To simulate barrier beach construction on a typical sandy coastline, Don built a wave tank in the form of a large, shallow basin. It was no doubt inspired by a smaller one constructed by Maury Schwartz at Columbia University (see collective volume on barrier islands: Schwartz, 1973). Together they simulated barrier construction by three different models. So much for uniqueness theories!

Don contributed to meetings in an indefatigable way, enlivening proceedings with his good humor and dry wit. These included the International Geological Congress (Paris, 1980), and regional INQUA field conferences (Aberystwyth, 1970; Brussels, 1972; Sicily, 1973; Pisa, 1975; Tunisia, 1977) and joint INQUA-IGCP coastal meetings (China, 1986; Halifax, 1990; Wellington, New Zealand, 1993; Sydney, 1996). There was a dedicated Quaternarist!

In later years Don became more and more involved in the research of his graduate students. He convinced Mark Brooks, a fully trained archaeologist, that to be an effective interdisciplinarian he should also get a doctoral degree in geology. Brooks did. From his long publications list, it can be seen immediately that most of them are joint efforts, clear evidence of Don's generous nature.

From 1992 to 1996, Don served as principal investigator for large DOE grants to the Westinghouse Savannah River Company, work that called on not only his skills in stratigraphy and groundwater hydrology, but also in interdisciplinary coordination.

Don's friends report assorted illuminating anecdotes. An early experience involved new brake linings for an ancient Studebaker; pity, they were on backwards. Overseas adventures are not generally reported in the scientific results, but they often tend to linger in the memory when the “great discoveries” are forgotten. An example is when we got physically stuck in a deep drain in Tunisia, trying to work out the Tyrrhenian stratigraphy. Another is when we were enjoying a canoe trip on Hudson Bay, and the ice floes began to close in. We were not heroic types. An overloaded boat-ride on the Cobabee River was not fatal, but when we returned, the tension was relieved by Don's proclamation: “Death cheated again!”

Acknowledgments
Betty Colquhoun, Maury Schwartz, Marylin Segal, Dave Perry, Frank Stapor, Mark Brooks, and Chris Kraft supplied helpful notes.

References Cited

SELECTED BIBLIOGRAPHY OF D.J. COLQUOON


1974 World shoreline, prepared for the INQUA Commission on Shorelines: Christchurch, New Zealand, INQUA Congress, map and 208 p. text.


1985 (and Steele, K.B.) Subsurface evidence of the Triassic Newark Supergroup in the South Carolina Coastal Plain: South Carolina Geology, v. 29, p. 11–22.


