Remington Kellogg, retired Assistant Secretary of the Smithsonian Institution and Director of the United States National Museum, died of a heart attack on May 8, 1969, in his 77th year, at his home in Washington, D.C. He had been recuperating from a broken pelvis suffered in a fall on the ice the previous January, but, except for this period, he had been constantly and productively engaged in research at the National Museum for more than 49 years. Retirement, which came in 1962, brought him welcome relief from administrative duties and an opportunity to intensify his study of fossil marine mammals. The years 1962 to 1969 were among his most productive.

Arthur Remington Kellogg, as he was christened (he dropped "Arthur" from his name early in his life), was born in Davenport, Iowa, on October 5, 1892, the son of Clara Louise (Martin) and Rolla Remington Kellogg. He was descended from colonial stock on both sides of the family.

His father was a printer who at one time or another was owner of several printing shops. Remington's mother was a schoolteacher before her marriage. The Kelloggs moved to Kansas City, Missouri, when Remington was six years old.

Of his early years Dr. Kellogg said,

I do not recall that I disliked any particular study. Westport High School in Kansas City was considered at the time to be an academic rather than a manual training high school. The courses given were in accordance with a regular schedule of four years of English, history, mathematics, science, and Latin. . . . From the fourth grade onward, while attending public grade and high schools, most of my spare time outside of school hours was devoted to studying wildlife in the nearby woods, and by the time I graduated from grade school I had prepared a small collection of mounted birds and mammals.

Before completing his high school studies, Kellogg had decided to attend a university where there were natural history collections. This interest led him to the University of Kansas, the training ground for many famous naturalists. Remington found it necessary to find employment as a salesman in a dry goods store, a worker in the smokehouse of a packing plant, and a cement worker on a construction crew in order to save enough money for college. In his first years at the university, he cooked his own meals and delivered papers. He sold trunks as a traveling salesman during the summer after his freshman year.

At the university, he concentrated first in entomology; later, he changed his field to mammals. From 1913 to 1916, he was a taxonomic assistant for mammals under Charles D. Bunker, curator of birds and mammals in the Museum of Natural History at
the university. His first paper, published in 1914, resulted from this museum work. Bunker took Kellogg to his cabin where he instructed him in skinning and preserving vertebrate specimens. In Kellogg's senior year, when an instructor died, he helped give a class in ornithology. He received his A.B. in January 1915 and his M.A. in 1916.

In Kellogg's freshman year, there began a lifelong friendship with Alexander Wetmore. In 1911, Wetmore joined the Bureau of Biological Survey, U.S. Department of Agriculture, and helped Kellogg to get summer jobs there, where he conducted field surveys of plant and animal life in the western United States. The two men worked closely together for many years in the Smithsonian Institution, first as curators and later in administrative positions when Wetmore was Secretary of the Smithsonian and Kellogg was Director of the United States National Museum.

While at the University of Kansas, Kellogg made his first acquaintance with marine mammals in the form of skeletons of white whale, porpoise, walrus, and seal. In the fall of 1915, he made a tour of museums in the eastern United States, which undoubtedly gave him further opportunity to examine whales, pinnipeds, and sirenians. At about this time, he made his decision to study the evolution of marine mammals, and in the fall of 1916, he entered the University of California at Berkeley to concentrate in zoology.

The most lasting influence resulting from his Berkeley years was that of John C. Merriam. Kellogg was given a teaching fellowship and was invited by Merriam to study the fossil record of the seals, sea lions, and walruses whose remains had been found in Pacific Coast Tertiary formations. This project resulted in Kellogg's first important papers on marine mammals (1921 and 1922), both dealing with fossil pinnipeds. With the thoroughness and deceptively modest title that were to characterize his published work throughout his career, the second of these, entitled "Pinnipeds from Miocene and Pleistocene Deposits of California," incorporated a critical review of the literature of fossil pinnipeds of the world. This work remains today the base upon which modern research on fossil pinnipeds begins.

Graduate work was interrupted by service in World War I. Kellogg served in France from February 1918 to June 1919 as a sergeant in the Medical Department Laboratory at Dijon, spending his spare hours observing and collecting birds and small mammals. Immediately after his discharge from the Army, Kellogg returned to Berkeley to complete the residence requirements for his Ph.D. He transferred from zoology to vertebrate paleontology under Merriam, resumed his teaching fellowship for a semester, and then, on January 1, 1920, was appointed Assistant Biologist in the Biological Survey, with headquarters in Washington, D.C.

While at Berkeley, Kellogg had met a fellow student, Marguerite E. Henrich, a native Californian. They were married in Berkeley on December 21, 1920, and set up their home in Washington, where, with many interludes of travel, they were to spend their entire married life.

For the next eight years, Kellogg performed varied assignments in field and laboratory for the Biological Survey. He was well suited for such work by inclination and training and by a tremendously retentive memory and systematic use of the literature. All his life, he was an inveterate reader and maker of reference cards with annotations filed taxonomically by subject and by author.
At about the time Kellogg joined the Biological Survey, his professor, John C. Merriam, was appointed President of the Carnegie Institution of Washington. Merriam arranged an appointment for Kellogg as a research associate of the Carnegie Institution, a position which he held from 1921 to 1943. Annual research grants from the institution helped Kellogg to carry on research on marine mammals concurrently with his extensive projects for the Biological Survey. It was decided that an investigation of the earliest known predecessors of the typical cetaceans, the Archaeoceti, found in older Tertiary rocks, would be supported by a grant. In October 1929, Kellogg went to Choctaw and Washington Counties, Alabama, to collect zeuglodont material to supplement the archaeocete collections in the National Museum. The monograph resulting from this study, "A Review of the Archaeoceti," published in 1936, is a landmark in cetology.

Merriam's increased administrative duties left him little time for paleontology, and he encouraged Kellogg to begin a project that Merriam had long had in mind—the study of the marine mammals of the Calvert Cliffs in Maryland. Beginning in the early 1920s, Kellogg devoted many weekends to collecting, adding significantly to the collections of his predecessors, William Palmer and Frederick W. True. By the time of Kellogg's death, the collection of fossil marine mammals in the National Museum was probably the best in the world.

The most fascinating aspect of marine mammals is the way in which existing mammalian organs have been modified for life in the sea. Kellogg decided to make this theme the basis for his doctoral thesis, which, because of the war and other matters, had yet to be written. Using the literature, but also drawing heavily on his own original studies, he wrote "The History of Whales—Their Adaptation to Life in the Water" (1928), for which he was awarded his Ph.D. by the University of California. This paper is still the best summary of the subject.

In 1928, Kellogg transferred to the U.S. National Museum as Assistant Curator of Mammals under Gerritt S. Miller. He became Curator in 1941. With his transfer to the Smithsonian, he was able to devote more time to study of marine mammals. He has described the course of his research as follows:

In the earlier stages the marine mammal studies were largely descriptive but as they progressed the importance of fossil cetaceans for geological correlation became apparent. As a collateral investigation, the recorded occurrences of migrating whales in the several oceans were collated. These observations confirmed the belief, more recently supported by whale marking, that the Recent whalebone whales make seasonal migrations from tropical calving grounds to the food banks located on or near the colder waters of the Arctic and Antarctic regions. The location of fossil remains tends to confirm the conclusion that the precursors of present day whalebone whales followed similar migration routes, and that similar types of fossilized skeletal remains occur in geological formations of corresponding age on the old shores that bordered those oceans.

Examination of fossilized cetacean skeletons excavated in sedimentary strata deposited on ancient beaches, estuaries, and river deltas revealed that although these air-breathing mammals had been adapted for habitual aquatic existence, no fundamentally new structures had been added in the course of geologic time, and that the functioning of the entire body is conditioned by adjustments of old organs to an exclusive life in the water.

The Archacoceti, the most primitive of the three suborders of whales, dating from Eocene and early Oligocene time—are well represented in fossil collections. So also are whales from the Miocene Epoch, a period of tremendous evolutionary radiation of Cetacea. Much less well known are the Oligocene ancestors of modern whale types.

While he was treating the Archacoceti systematically, Kellogg simultaneously worked on the description of Miocene Cetacea from both coasts of North America. This study was of major concern to him from the time of his description of the humpback whale *Megaptera miocaena*, in 1922, to his last paper, “Cetothere Skeletons from the Miocene Choptank Formation of Maryland and Virginia,” published the week after his death.

The difference in Kellogg’s approach to the Archacoceti and the Miocene Cetacea is significant and proper. The Archacoceti are unified by primitive characteristics that permit standard taxonomic treatment, whereas the variation among the Miocene forms is such that Kellogg, rightly, usually refused to assign genera to families or to express opinions as to their relationships to modern forms. At the same time, his meticulous treatment of both specimens and literature clarified many a taxonomic problem, even though it was as yet insoluble because of paucity of data. An example is his treatment of the Squalodontidae (1923), published under the title “Description of Two Squalodonts Recently Discovered in the Calvert Cliffs, Maryland, and Notes on the Shark-toothed Cetaceans.” All genera assigned to the family are recorded and are either accepted, reassigned, or placed in limbo as insufficiently known. This last course was often preferred by him over the formal declaration of a *nomen nudum*, because the number of available specimens was so small that he felt it wise to wait for further information before making such decisions. The squalodont paper remained the definitive work on that group until Rothausen, in 1968, built upon it in his “Die systematische Stellung der europäischen Squalodontidae” (Paläont. Zeitung, 42, 1/2, p. 83-104).

Kellogg was not always taxonomically so cautious, however. In “Miocene Calvert Mysticetes Described by Cope” (1968), he declared a number of Cope’s genera, based on mandibular fragments, to be *nomen nuda*.

Although Kellogg avoided formal taxonomic assignment to higher categories of most of the Miocene Cetacea that he described, he often discussed relationships, paleoecology, and geographic distribution. The great mass of his work on Miocene forms is indispensable for all workers on cetacean evolution; it not only furnishes them with clear and accurate information, including many evolutionary ideas, but also leaves them free of premature taxonomic assignments that would only have to be undone. This attribute of his work is particularly noticeable in his treatment of the Miocene porpoises. The Miocene produced many porpoises of modern type, undoubtedly including both forerunners and members of the modern families. At this stage of evolution, however, the distinctions between families are subtle, and it is easy to be misled by obvious characters that probably result from parallelism or convergence. While describing or analyzing a number of genera—*Eurhinodelphis*, *Zarhachis*, *Kentrionodon*, *Phocageneus*, *Schizodelphis*, *Hadrodelphis*, and others—he left their assignment to higher taxa for future workers. At the time of his death, he was reviewing the Miocene porpoises.

The publication of “The History of Whales” established Kellogg as an authority in the field of cetology, and soon thereafter, in 1930, a new and important phase of his
life began. In April of that year he went to Berlin as a delegate to a conference of experts on whaling matters held under the auspices of the League of Nations. This was the first of a series of conferences on international regulation of whaling, including the Washington conference of 1946 which formulated the International Convention providing for the establishment of the International Whaling Commission. He was United States Commissioner on the International Whaling Commission from 1949 to 1951, and chairman from 1952 to 1954. Through these years, he fought hard for conservation at a time when little thought was given to it.

An important by-product of the 1930 trip to Europe was the opportunity to study fossil whales in museums. Whales of Miocene age have been found in sedimentary basins in Belgium, Austria, and Italy. The collection at the Musée Royal d'Histoire Naturelle in Brussels consists of hundreds of specimens discovered in the mid-19th century during the construction of the great forts at Antwerp. Observation of the European specimens was essential to the attempt to establish the worldwide pattern of Miocene whale distribution. Understandably, specimens described in Europe and America had almost always been given different names, yet the habits of whales today indicate the probability that Miocene genera and even species ranged widely over the oceans. Kellogg's discussions with European specialists led to lifelong friendships; notable among these was his relationship with Ernst Stromer von Reichenbach in Munich.

Detailed comparisons with European specimens are frequent in Kellogg's papers; yet, as in his approach to taxonomy, he was conservative in suggesting trans-Atlantic relations.

In addition to his work on marine mammals, he produced several studies of fossil and subfossil mammals from caves and archaeological sites, and in 1942 he led a party in excavating Pleistocene mammals in Rampart Cave, near Boulder Dam on the Colorado River.

In May 1948 Kellogg was appointed Director of the U.S. National Museum, and in February 1958 he was appointed Assistant Secretary of the Smithsonian Institution. He got a chuckle out of the fact that when he retired, in 1962, he was replaced by three appointees: an Assistant Secretary, the Director of the National Museum, and the Director of the Museum of Natural History. The period of Kellogg's administrative appointments was an active one for the Smithsonian—almost all the exhibit halls in the Natural History Museum were modernized, the scientific staff of the museum was enlarged, many new directions of research were entered, and the new Museum of History and Technology was built. Despite the demands of these and many other activities, Kellogg managed to spend part of each day in research on fossil marine mammals.

When he retired in 1962, Dr. Kellogg moved to an office in the vertebrate paleontology area in the newly built east wing of the National Museum of Natural History. He organized the collection of fossil marine mammals, which had perforce been neglected during his years of administration. Then he plunged into the study of the Miocene marine mammals of Maryland; as always, he brought into this work comparisons based on his wide studies. Between 1965 and 1969, he published nine major contributions to the study of fossil marine mammals. He was working hard, but he was
never too busy to discuss paleontology with his colleagues, visiting students, or children who had found a porpoise vertebra on a Chesapeake Bay holiday.

A longtime friend, Edward P. Henderson, wrote after reading this memorial:

The above outlines the accomplishments of this man but neglects the unusual personality which those who were associated with him knew so well. He was recognized by all to be able in many fields, he accepted nothing as being true until it was proven, and usually he accepted the negative side of all that was submitted to him, because he wanted more than one reason for accepting anything as a fact or policy. It is impossible to describe with words the expression on his face as he exploded into a few choice sentences often sprinkled with "Kelloggical" profanity and a well-known grin. His door was always open not only to the professional colleagues but to all levels of the staff, and all who came could present their case.

Kellogg is survived by his wife of nearly 50 years. He was the last of his immediate family, his younger sister and brother having preceded him in death.

Mrs. Kellogg has presented Dr. Kellogg's library on marine mammals, including the bookcases that he built for his home, to the Smithsonian Institution, where it forms the nucleus of the Remington Kellogg Library of Marine Mammalogy. His books on land mammals were presented to the University of Kansas. In his will, Dr. Kellogg expressed his intent to establish a fund for the advancement of knowledge of fossil marine mammals. Such a fund, bearing Kellogg's name, has been established by Mrs. Kellogg at the Smithsonian Institution; the National Geographic Society and friends of Dr. Kellogg have also contributed to it. A memorial fund has also been established at the Museum of Paleontology, University of California, Berkeley, through the generosity of Dr. Leslie E. Wilson and the late Edith P. Wilson.

BIBLIOGRAPHY OF R. KELLOGG

1919 (with Harper, Francis) Xmas day census: Is-sur-Tille, Dept. Cote d'Or, France: Bird-Lore, v. 21, no. 1, p. 49.

------ Are moles held in cheek by blacksnakes?: U.S. Golf Assoc., Green Section Bull., v. 2, no. 5, p. 157-159.

--- Programme of the final public examination for the degree of doctor of philosophy: Univ. California, Graduate Division, 6 p.

--- Obituary notice of James Williams Gidley: Jour. Mammalogy, v. 12, no. 4, p. 445-446.

--- Notes on the spadefoot of the western plains (Scaphiopus hammondii): Copeia, no. 1, p. 36.

1933 The last phase in the history of whaling. Protective measures needed to perpetuate the supply of whales off the coasts of North America, as recommended by the Committee on Marine Mammals: Senate Committee Print, 73d Cong., 2d Sess., p. 57-68.

--- Obituary notice of Sigurd Risting: Jour. Mammalogy, v. 17, no. 1, p. 84.

1937 Comments on whale vertebra from Escalante Point, in Bancroft, M. F., ed., Gold-bearing deposits on the west coast of Vancouver Island between Esperanza Inlet and Alberni Canal: Canada Geol. Survey Mem. 204, Pub. no. 2432, 34 p.

1940 Whales, giants of the sea: Natl. Geog. Mag., v. 77, no. 1, p. 35-90.

Past and present status of the marine mammals of South America and the West Indies: Smithsonian Rept. for 1942, Pub. 3719, p. 299-316.

1944 Mammals. In a field collector's manual in natural history prepared by members of the staff of the Smithsonian Institution: Smithsonian Inst. Pub. 3766, p. 6-23.

A new macaque from an island off the east coast of Borneo: Washington Biol. Soc. Proc., v. 57, p. 75-76.
—— Problems related to marine animals, in Flint, R. F., A program of desirable scientific investigations in Arctic North America: Montreal, Arctic Inst. North America, p. 43-44.
—— (with Scheffer, Victor B.) Occurrence of Stenella euphrosyne off the Oregon Coast: Murrelet, v. 28, no. 1, p. 9-10.
—— Scientists and deep sea resources: Kansas Univ. Graduate Mag., v. 46, no. 8, p. 6-8.
—— Distribution and supposed age relationships of New Zealand Cetaceans, Table I, in Cloud,