
[Review of the uses that may be made of the geological maps accompanying vol. vii, Geology of Ohio.] *Ohio Min. Jour.*, whole no. 23, 1896, pp. 90–113.

What geology owes to the miner of coal. *Ohio Min. Jour.*, whole no. 25, 1898, pp. 82–90, 1 pl.

The method of science and its influence upon the branches of knowledge pertaining to man. An address delivered before the alumni of Hamilton College, June, 1888. 30 pp. 1898.

[Human progress in the nineteenth century.] Address of the President [of the American Association for the Advancement of Science, in response to an address of welcome]. *Science*, vol. x, new series, 1899, pp. 267–271.

The memoir of Sir William Dawson was read by H. S. Williams.

MEMOIR OF SIR J. WILLIAM DAWSON

BY FRANK D. ADAMS

It is with deep regret that we record the death of Sir William Dawson, which took place at Montreal on the morning of November 19, in the eightieth year of his age. In him Canada loses a distinguished geologist and naturalist, as well as one who was intimately identified with educational work of all kinds, but more especially with higher education in the province of Quebec.

Sir John William Dawson, having been born at Pictou on October 13, 1820, was a native of Nova Scotia, a province which has produced more than its share of the Canadians who have risen to eminence in the various walks of life. His father, James Dawson, was from near Aberdeen, Scotland, and came to Nova Scotia to fill a position in a leading business house in Pictou, and on the termination of his engagement began business on his own account, becoming in the course of time one of the chief ship-builders in that part of Nova Scotia. James Dawson had but two children, of whom Sir William was the elder. The younger died at an early age, leaving Sir William thus the sole survivor of the family.
While still at school in Pictou, at the age of twelve he developed a love for natural science, inherited from his father, and made large collections of fossil plants from the Nova Scotia Coal Measures, so well exposed about his native place. He speaks of himself at that time as being a "moderately diligent, but not a specially brilliant pupil." On leaving school he studied at Pictou College and subsequently at the University of Edinburgh. While at the former seat of learning, at the age of sixteen, he read before the local natural history society his first paper, having the somewhat ambitious title "On the structure and history of the earth."

At Edinburgh he studied under Jamieson, Forbes, and Balfour, as well as with Alexander Rose, whom he refers to in some notes and reminiscences as a single-hearted mineralogist and the greatest authority on the mineralogy of Scotland. He records his impression of the University of Edinburgh at that time as being "a very imperfect school of natural science in comparison with our modern institutions," and adds: "Jamieson, who was my principal teacher, devoted a large portion of the earlier lectures of his course to physiography, and the rest to minerals and rocks, but I was surprised to find how little even some of the most eminent English geologists of the day knew of mineralogy, and how uncertain in consequence was their diagnosis in the field of the nature of rock masses."

In 1841 he met, however, two men with whom he was afterward intimately associated in his work—Sir Charles Lyell, who more than any other man gave form to modern geological science, and Sir William Logan, who gave the first great impetus to the study of the older rocks of the northern half of the North American continent and who founded the Geological Survey of Canada.

He returned to Nova Scotia in 1847, and two years later went to Halifax to give a course of lectures on natural history subjects in connection with Dalhousie College, and organized classes for practical work in mineralogy and paleontology. These were attended by students, citizens, and pupils of higher schools—a foreshadowing of university extension. In 1850, at the age of 30, having already attracted some attention by the publication of a number of papers, reports, and lectures, he was appointed Superintendent of Education for Nova Scotia. His work in connection with this position obliged him to travel continually through all parts of the province, and on these journeys he accumulated that immense mass of information concerning the geology and mineral resources of Nova Scotia which is incorporated in his largest work—that entitled "Acadian Geology."
Sir Charles Lyell, in 1841, on his first visit to America, met Sir William and was by him conducted to many places of geological interest in Nova Scotia, and on his subsequent visit in 1852 they together continued their studies in Nova Scotian geology. In a letter to Leonard Horner, dated September 12 of this year, Lyell writes:

"My companion, J. W. Dawson, is continually referring to the curious botanical points respecting calamites, endogenites, and other coal plants, on which light is thrown by certain specimens collected by him at Pictou. He told me that the root of the pond lily *Nymphaea odorata*, most resembled Stigmaria in the regularity of its growth, and Doctor Robb showed me a dried specimen, a rhizoma, which being of a totally different family and therefore not strictly like, still suggests the probability of the Stigmaria having grown in slush in like manner."

And in another part of the same letter he, referring to the now celebrated Joggins section on the coast of Nova Scotia, says:

"Dawson and I set to work and measured foot by foot many hundred yards of the cliffs, where forests of erect trees and calamites most abound. It was hard work, as the wind one day was stormy, and we had to look sharp lest the rocking of living trees just ready to fall from the top of the undermined cliff should cause some of the old fossil ones to come down upon us by the run. But I never enjoyed the reading of a marvelous chapter of the big volume more. We missed a botanical aide-de-camp much when we came to the top and bottoms of calamites and all sorts of strange pranks which some of the compressed trees played."

In 1854 Forbes, who was professor of geology and zoology in the University of Edinburgh, died, and Lyell wrote to Sir William, advising him to apply for the chair, promising him his support and that of a number of his influential friends, while Sir William's "Acadian Geology," which had just been published in Edinburgh, testified to his abundant fitness for the position. He was about to set sail for Scotland to prosecute his candidature for the chair when he received word that the place had been filled, sooner than had been anticipated, by the appointment of a zoologist who had been strongly supported by the medical school of the university, but, by a strange coincidence, he received, almost on the very day that he was to sail for Scotland, a letter offering him the principalship of McGill University.

This institution, founded by royal charter in 1821, had made but slow progress in its earlier years, and was at this time, through litigation and other causes, almost in a state of collapse. Sir William, then Mr Dawson, was pointed out to the governors of the college by Sir Edmund Head, then Governor-General of Canada, as a man who, if his services could be secured, was eminently fitted to undertake the task of reconstructing it.

The services of Mr Dawson were accordingly secured, and in 1855 he
assumed the principalship of McGill University, stipulating at the same time that the chair of natural history should be assigned to him.

The university as he found it had three faculties and but sixteen professors, a number of whom gave only a portion of their time to university work, while the buildings and equipment were wretched. When it is stated that the university has now one hundred and twenty professors and instructors of various grades and an equipment which is in all departments fairly good and in some of them unsurpassed, some idea may be gained of the progress which the institution made under Sir William Dawson's care and guidance.

As professor of natural science Sir William at this time delivered courses in chemistry, botany, zoology, and geology, and natural science became a very favorite study among the students, for he was an excellent lecturer, and his enthusiasm for these subjects was communicated to all who heard him. As years went on the instruction in the first three of these subjects was undertaken by others, and a special chair of geology and paleontology was endowed by his old friend and co-worker, Sir William Logan, a chair which he held until his final retirement. His teaching work, however, formed but a small part of his daily labors. In addition to administering the affairs of the university, he was first and foremost in every movement to further education in the province, and no educational board was complete without him. He was the honorary president of the Natural History Society and never missed a meeting or a field day, and also identified himself closely with many other societies in Montreal, and spared neither time nor labor in their behalf.

Over and above all this he found time to carry out original work along several lines, achieving most valuable results, as well as to write many popular works on science, more especially in its relation to religion. Original investigation he always considered to be one of the chief duties and pleasures of a man of science. Most of his work along these lines was done during his summer vacations; in fact, he was led to accept the position of principal in McGill chiefly by the fact that the vacations gave him leisure and opportunity for work of this kind.

He was always very progressive in his ideas relative to the scope and development of university teaching, and was continually urging the endowment of new chairs and the broadening of university work, so that all young men wishing to train themselves for the higher walks of life might in the university find their needs supplied. As an instance of this it may be mentioned that so far back as 1858 he succeeded in establishing a school of civil engineering, which, after a severe struggle of five years, succumbed to some unfriendly legislation, only, however
to be revived by him in 1871, and developed into the present faculty of applied science of McGill University, with its numerous departments, its full staff of instructors, and excellent equipment. Sir William, furthermore, never hesitated, if funds were not forthcoming in sufficient amount for these purposes, to subscribe large sums out of his own limited private means, and he was also the continual helper of needy students desiring to avail themselves of the university’s teaching.

Sir William received the degree of M. A. from the University of Edinburgh in 1856 and the degree of LL. D. from the same university in 1884. His attainments and the value of his contributions to science were widely recognized, and he was elected an honorary or corresponding member of many learned societies on both sides of the Atlantic. He was made a Fellow of the Geological Society of London in 1854 and of the Royal Society in 1862. He was the first president of the Royal Society of Canada, and has occupied the same position in the Geological Society of America and in both the American and British Associations for the Advancement of Science.

In 1883 he attended the meeting of the British Association for the Advancement of Science, at Southport, in the interest of the meeting in Montreal in the following year, and spent the ensuing winter in Egypt and Syria studying the geology of those countries, more especially in its relation to sacred history, and accumulated much information on this subject, which appeared later in his book entitled “Modern Science in Bible Lands,” as well as in other books and papers which he published subsequently.

He took an active part in the organization and proceedings of the meeting of the British Association for the Advancement of Science in Montreal in 1884, on the occasion of which he received the honor of knighthood.

In 1893 Sir William was seized with a very severe attack of pneumonia, and his health became so seriously impaired that he was obliged to give up his work for a time and spend the winter in the southern United States. His strength, however, was not restored, and he resigned his position as principal of McGill University in June, 1893, and retired from active work. During the later years of his life his strength gradually ebbed away, and what little work he could undertake consisted in arranging his collections and working on some unfinished papers. Several of these were published in 1894 and 1895; but the years of quiet labor in his favorite pursuits to which he looked forward at this time were cut short by a series of sharp attacks, culminating in partial paralysis, which forbade further effort. He passed away on the 19th of November peacefully and without pain.
Lady Dawson, with three sons and two daughters, survive him. His eldest son, Doctor George M. Dawson, the present director of the Geological Survey of Canada, has inherited his father's taste for geological studies and has achieved wide distinction in the world of science.

Sir William’s first original contribution to science was a paper read before the Wernerian Society of Edinburgh in 1841 on a species of field mouse found in Nova Scotia. From that time onward he was a continuous contributor to scientific journals and to the publications of various learned societies. His papers were very numerous and covered a wide range of subjects in the domain of natural history. The most important work of his earlier years was an extended study of the geology of the eastern maritime provinces of the Dominion of Canada. His results are embodied in his “Acadian Geology,” already mentioned. It is a volume of nearly 1000 pages, is accompanied by a colored geological map of Nova Scotia, and has passed through four editions. In writing to Sir William in 1868 Sir Charles Lyell says of this work:

“I have been reading it steadily and with increased pleasure and profit. It is so full of original observations and sound theoretical views that it must, I think, make its way, and will certainly be highly prized by the more advanced scientific readers.”

It is the most complete account which he have of the geology of Nova Scotia, New Brunswick, and Prince Edward island, although since it appeared large portions of these provinces have been mapped in detail by the Geological Survey of Canada and Sir William’s conclusions modified in some particulars. In carrying out this work Sir William paid especial attention to the paleontology of the Carboniferous system and to the whole question of the nature and mode of accumulation of coal. He subsequently studied the paleontology of the Devonian and Upper Silurian systems of Canada, discovering many new and important forms of plant life.

In 1884 he began the study of the Cretaceous and Tertiary fossil plants of western Canada, and published the first of a series of papers on the successive floras from the Lower Cretaceous onward, which appeared in the Transactions of the Royal Society of Canada. He also contributed a volume, entitled “The Geological History of Plants,” to Appleton’s International Scientific Series. In 1863 he published his “Air breathers of the Coal period,” in which were collected the results of many years’ study in the fossil batrachians and the land animals of the Coal Measures of Nova Scotia. The earliest known remains of Microsaurus were then discovered by him in the interior of decayed tree stumps in the Coal Measures of South Joggins. The results of his later studies in
these creatures were embodied in a series of subsequent papers which appeared from time to time.

On taking up his residence in Montreal his attention was attracted to the remarkable development of Pleistocene deposits exposed in the vicinity of the city, and he undertook a detailed study of them, and especially of the remarkably rich fossil fauna which they contain. He also studied subsequently the Pleistocene deposits of the lower Saint Lawrence river and instituted comparisons between them and the present fauna of the gulf of Saint Lawrence and of the Labrador coast.

He was led by these studies to believe that the deposits in question had been accumulated largely through the action of sea-borne ice, and being anxious to study the evidence on which the continental geologists had based their views of the high efficiency of land ice as an eroding agent, he visited Switzerland in 1865 and there studied the phenomena of glacial action. By these studies he was led to attribute much less importance to land ice as an eroding agent than was commonly assigned to it. "I was also led to believe," he wrote shortly before his death, "that while the carrying power of a glacier is undoubtedly great, it is altogether inferior to that of sea-borne ice, whether in the form of ice-fields, grinding on the shores, or of icebergs, and these views, arrived at and published in 1865, I have ever since consistently maintained."

The results of his studies on the Canadian Pleistocene appeared in a series of papers as the work progressed, and were finally embodied in a volume entitled "The Canadian Ice Age," which was issued in 1893 as one of the publications of the Peter Redpath Museum of McGill University. This is one of the most important contributions to the paleontology of the Pleistocene which has hitherto appeared.

As Sir William was always much more interested in the history of life than in any of the inorganic aspects of the science of geology, he considered one of his most important contributions to scientific knowledge to be the discovery of *Eozoon canadense*. The true character of this remarkable object, concerning which there has been so much discussion, can hardly be considered even yet as definitely settled. Its resemblance microscopically to certain organic forms is so remarkable that some of the most experienced observers have accepted it as of organic origin. Its field relations, however, leave but little doubt that it is inorganic.

The literature of this subject, which includes many papers by Sir William, is quite voluminous, but the chief facts are summed up in his book entitled "The Dawn of Life," which appeared in 1875.

Sir William was also a prolific writer of popular works on various geological topics. Among these may be mentioned his "Story of the earth and man," his "Fossil men and their modern representatives,"
his "Meeting place of geology and history," and his "Modern science in Bible lands." These books, all written in a very entertaining style, had a wide circle of readers, and many of them passed through several editions.

Other volumes from his pen, as well as many papers contributed to various religious publications, treated of the relation of science and religion. One of the earliest of these was entitled "Archaia," and dealt with the relations of historical geology to the Mosaic account of the creation. In others he considered the relation of the evolutionary hypothesis to religious thought.

Sir William was a Presbyterian of the old school and strongly opposed to all theories of the evolution of man from brute ancestors, nor would he allow anything more than a very moderate antiquity for the species. The study of geology, too, he would have emancipated from "that materialistic infidelity which by robbing nature of the spiritual element and of its presiding divinity makes science dry, barren, and repulsive and diminishes its educational value."

These works on the relation of science and religion, while they undoubtedly met a popular need, have but a transitory value, and they are not the works by which Sir William Dawson will be remembered. His reputation is founded on the great contributions to our permanent stock of knowledge which he has made and which are embodied in his works on pure science, representing achievements of which any man might well be proud. His name has been perpetuated in connection with the geological department of his university by the establishment of a second chair in geology, to be known as the Dawson chair, which has just been endowed in his memory by Sir William Macdonald.

Sir William was a man of quiet geniality, gentle and even deferential in manner, but decided in opinion and firm in action. The pre-eminent note of his character was sincerity and singleness of purpose. His loss will be felt by all who knew him, but especially by the members of the university with which he was so long connected.

BIBLIOGRAPHY OF SIR J. WILLIAM DAWSON, BY HENRY M. AMI

(Publications relating to Geology and Paleontology)

1842.

A geological excursion in Prince Edward island: Haszard's Gazette.

1843.

1845.

On the Newer Coal Formation of the eastern part of Nova Scotia: *Ibid.*, vol. 1, pp. 322-330 (with appendix on the junction of the Carboniferous and Silurian systems at Maccara's), London. (Reprint from the above.)

1846.

1847.

1848.

1849.

1850.

1851.

1852.
BIBLIOGRAPHY OF SIR J. WILLIAM DAWSON

1853.

1854.

1855.

Acadian geology, an account of the geological structure and mineral resources of Nova Scotia and portions of the neighboring provinces of British America: 1st edition, xii pp. and 388 pp., 1855 (illustrations and map), Edinburgh, London, and Pictou, N. S.

Notice of the discovery of a reptilian skull in the coal of Pictou. (Read November 1, 1854.) Quart. Jour. Geol. Soc., vol. 11, pp. 8, 9, London. (Issued 1855.)

On a modern submerged forest at Port Lawrence, Nova Scotia: Ibid., 1855, pp. 119-122, London.

1856.

Remarks on a specimen of fossil wood from the Devonian rocks (Gaspé sandstones) of Gaspé, Canada East: Ibid., part 2, pp. 174-176.

1857.

LXXXIX—Bull. Geol. Soc. Am., Vol. 11, 1899

On the newer Pliocene and post-Pliocene deposits of the vicinity of Montreal, with notices of fossils recently discovered in them: *Ibid.*, December, 1857, vol. 2, no. 6, pp. 401-426, Montreal. (Issued as separate, 28 pp., 1858, Montreal.)

Further gleanings from the meeting of the American Association for the Advancement of Science in Montreal, art. 32: *Ibid.*, vol. 2, September, 1857, pp. 355-359, Montreal.

1858.

Things to be observed in Canada, and especially in Montreal and its vicinity: *Ibid.*, vol. 3, 1858, pp. 1-12, Montreal.

1859.

Address by the President (Principal Dawson, at the) Inauguration of the new buildings of the Natural History Society, Cathcart street, Montreal: *Can. Nat. and Geol.*, vol. 4, 1859, no. 2, pp. 142-144, Montreal.

1860.

Archaia, or studies of the cosmogony and natural history of the Hebrew scriptures: 400 pp., Montreal and London.

Supplementary chapter to Acadian geology: 70 pp.; wood engravings of fossils, Edinburgh.

1861.

The pre-Carboniferous flora of New Brunswick, Maine, and eastern Canada: *Can. Nat. and Geol.*, vol. 6, 1861, pp. 161-180, Montreal.

(On fossil plants from Perry, Maine.) Agriculture and Geology: *Sixth Ann. Rep. of the Secretary of the Maine Board of Agriculture*, pp. 249-251, Maine, 1861.
Notes on the geology of Murray Bay, lower St. Lawrence (with list of Cambro-Silurian and post-Tertiary fossils and description of Lingula eva, by E. Bilinggs, p. 150): Can. Nat. and Geol., vol. 6, pp. 138–151, Montreal.

The earthquake of July 12, 1861: Ibid., August, 1861, vol. 6, p. 329, Montreal.

1862.

1863.

Air-breathers of the Coal period; a descriptive account of the remains of land animals found in the Coal Formation of Nova Scotia, with remarks on their bearing on theories of the formation of coal and of the origin of species. (Issued as separate.) 81 pp., 6 plates, 1 photograph, 1863, Montreal.

1864.

1865.

Note on Mr Lesley's paper "On the Coal Measures of Cape Breton" (with remarks by Mr Lesley): Excerpt from *Proc. Amer. Phil. Soc.*, March, 1865, vol. 9, pp. 165-170.

Notes on the meeting of the British Association at Birmingham, 1865: Excerpt from *Can. Nat. and Geol.* for December, 1865, 16 pp. Issued as separate.

1866.

1867.

Coal discoveries and primordial fossils in Nova Scotia and New Brunswick: *Geol. Mag.*, vol. 4, 1867, pp. 73, 74, London.

1868.
The evidence of fossil plants as to the climate of the post-Pliocene period in Canada (read 1866): Ibid., vol. 3, 1868, pp. 69-76, Montreal.
The removal and restoration of forests: Ibid., vol. 3, 1868, pp. 405-417, Montreal.

1869.
On geological time: Ibid., vol. 4, p. 73, Montreal.
(Review of) Croll on Geological time: Ibid., 1869, vol. 4, pp. 73-78, Montreal.
Deep sea dredging in its relations to geology: Ibid., 1869, vol. 4, pp. 78-81, Montreal.
On some new fossil plants, etc., from Gaspé. (Summary.) Can. Nat. and Geol., vol. 4, 1869, pp. 404, 465, Montreal.

1870.

Note on the genus Eophyton: *Ibid.*, vol. 5, 1870, pp. 20–22. (It is only probable that this article was written by Dawson.)

1871.

Annual address of the President of the Natural History Society of Montreal (delivered May 19, 1871): *Can. Nat. and Geol.*, second series, vol. 6, pp. 1–9, Montreal (whole volume issued 1872).

The story of the earth and man, 12mo, 420 pp., London. (11th ed. in 1894.)

On the physical geography of Prince Edward Island: *Can. Nat. and Geol.*, vol. 6, 1872, pp. 342, 343, Montreal.

Annual address of the President of the Natural History Society of Montreal, May, 1872; *Can. Nat. and Geol.*, second series, vol. 7, 1873, pp. 1-11, Montreal.

Fossil woods of British Columbia: *Bot. Jahresber.* 1, 1873, no. 32.

LXXX—Bull. Geol. Soc. Am., Vol. 11, 1899

Remarks on Mr Carruthers' views of Prototaxites: *Monthly Microsc. Jour.*, vol. 10, 1873, pp. 66-71. (Published as a separate pamphlet, 7 pp., August, 1873.)

1874.

1875.

The dawn of life, being the history of the oldest known fossil remains and their relations to geological time and to development of the animal kingdom, 239 pp., London and Montreal.

Note on the plants collected by Mr G. M. Dawson from the Lignite Tertiary de­posits near the forty-ninth parallel. Appendix A, pp. 327–331, of "Report on the geology and resources of the region in the vicinity of the forty-ninth parallel from the lake of the Woods to the Rocky mountains, with lists of plants and animals collected, and notes on the fossils," by G. M. Dawson, Montreal, 1875.

(Recollections of Sir Charles Lyell.) Being the annual presidential address of the Natural History Society of Montreal for 1875, Can. Nat. and Geol., vol. 8, 1878, pp. 8–16. (Issued as separate, 1875, Montreal.)

1876.

1877.

(Remarks on geology of Belœil and vicinity:) Ibid., pp. 286–288, Montreal.

Lower Carboniferous fishes of New Brunswick: Ibid., pp. 337–340. (Issued as separate, 4 pp., Montreal.)

Notes on some Scottish Devonian plants. (Read before the Edinburgh Geological Society, December 20, 1877.) *Can. Nat. and Geol.*, second series, vol. 8, 1877, pp. 379-389, pl. 4, Montreal. (Issued as separate, 10 pp., with 1 pl.)

1878.

Supplement to the second edition of Acadian Geology, containing additional facts as to the geological structure, fossil remains, and mineral resources of Nova Scotia, New Brunswick, and Prince Edward Island. 102 pp., London. (Issued as separate paper.)

The present rights and duties of science: *Princeton Review*, November, 1878, pp. 674-696. (Also printed separately.)

1879.

The Quebec group of Sir William Logan, etc. Annual address of the President before the Natural History Society of Montreal, May 19, 1879. *Ibid.*, vol. 9, no. 3, pp. 165-180, 1879. (Issued as separate pamphlet, 15 pp.)

1880.

Lecture notes on geology and outline of the geology of Canada for the use of students, with figures of characteristic fossils. 96 pp., 1880, Montreal.

Fossil men and their modern representatives, an attempt to illustrate the characters and conditions of prehistoric man in Europe by those of the American races. 348 pp., London and Montreal. (3d ed. in 1888.)

1881.

Paleontological notes: 1. A new species of Piloceras; 2. Saccamina? (Calcisphaera) eriana (an Erian rhizopod of uncertain affinities); 3. New Devonian plants

Geological features of Bible lands: *Kansas City Review*, vol. 4, 1881, pp. 672–674, Kansas City.

1882.

1884.

On Rhizocarps in the Paleozoic period. (Abstract.) 1883 meeting of the American Association for the Advancement of Science. *Proceedings*, vol. 32, 1884, pp. 260-264, Salem. Published as separate pamphlet, 8 pp.; proof copy distributed at meeting.

1885.

Canadian and Scottish geology. (An address delivered May 26, 1884, before the Edinburgh Geological Society, at the close of the session 1883-84.) *Trans. Edinb. Geol. Soc.*, vol. 5, 1885, pp. 112-122, Edinburgh. (Issued as separate.)

Notes on prehistoric man in Egypt and the Lebanon: *Trans. Victoria Institute*, vol. 18, 1885, pp. 287-313, London. (Read May 6, 1884.)

A modern type of plant in the Cretaceous: *Science*, June, 1885, pp. 531, 532.

The chain of life in geological time, a sketch of the succession of animals and plants: Second revised edition, 1885, London. (3d revised edition in 1888.)

The Cretaceous floras of Canada: *Nature*, November 12, 1885, pp. 32-34. (From advance sheets of *Trans. Roy. Soc. Can.*)

1886.

Handbook of Zoology, with examples from Canadian species, recent and fossil, by Sir J. William Dawson, third edition, revised and enlarged, 304 pp. and 19 pls., Montreal, 1886.

1887.

On the fossil plants of the Laramie formation of Canada. (Read May 27, 1886.) Ibid., vol. 4, sec. 4, pp. 19-34, 2 pls., 1887.

Note on boulder drift and sea margins at Little Métis, Lower St. Lawrence: Ibid., vol. 2, no. 1, 1887, pp. 36-38, Montreal.

1888.

Note on fossil wood and other plant remains from the Cretaceous and Laramie formations of the western territories of Canada. (Read 1887.) Trans. Roy. Soc. Can., vol. 5, sec. 4, pp. 31-37, Montreal. (Published in 1888.)

On specimens of Eozoon canadense and their geological and other relations: Peter Redpath Museum, McGill University, Montreal, 1888, 106 pp.

The historical deluge in its relation to scientific discovery and to present day questions, with appendix, 56 pp., no. 76, Present Day Tracts, The Religious Tract Society, London, 1888.

1889.

Handbook of geology for the use of Canadian students. 250 pp., Montreal.

1890.

The Quebec group of Logan: Can. Rec. Sci., vol. 4, pp. 133-143, July, 1890, Montreal. (Issued as separate.)

1891.

On new specimens of Dendrerpeton acadianum, with remarks on other Carboniferous amphibians: Geol. Mag., Decade 3, vol. 8, no. 324, pp. 145-156, London. (Issued as separate April, 1891.)

The age of the Catskill flora: Amer. Geol., vol. 7, p. 363, 1891, Minneapolis.

On fossil plants from the Similkameen valley and other places in the southern interior of British Columbia. Trans. Roy. Soc. Can., vol. 8, sec. 4, pp. 75-91, 1891. (Read May, 1890.)

1892.

Parka decipiens. Notes on specimens from the collection of James Reid, Esq., Allan House, Blairgowrie, Scotland; part 1, historical and geological: *Trans. Roy. Soc. of Can.*, vol. 9, sec. 4, pp. 3-8. (Whole volume issued in 1892.)

1893.

Some salient points in the science of the earth. 499 pp., London and New York, 1893.

The Canadian Ice Age, being notes on the Pleistocene geology of Canada, with especial reference to the life of the period and its climatic conditions. 301 pp., 1893, Montreal, New York, and London; issued as *Peter Redpath Museum Bulletin*, McGill University, Montreal, 1893.

1894.

The study of fossil plants: *Bull. Geol. Soc. Am.*, vol. 5, pp. 2-5, 1894, Rochester, N. Y.

Fossil plants of Canada, as tests of climate, etc.: *Natural Science*, vol. 4, 1894, pp. 177-182.

BIBLIOGRAPHY OF SIR J. WILLIAM DAWSON

Our record of Canadian earthquakes: (an. Soc. Sci., vol. 6, 1894, pp. 8-16.
Note on a paper on "Eozoonal structure of the ejected blocks of Monte Somma." (Publication not indicated.) 4 pp., March, 1894, Montreal.
The meeting place of geology and history. 223 pp., London, New York, Chicago, Toronto.

1895.

Note on a specimen of Beluga catoden from the Leda clay, Montreal: Ibid., April, 1895, vol. 6, no. 6, pp. 351-354, Montreal.
A walk in a coal forest: Coal Trade Journal, March, 1895, New York.
Review of the evidence for the animal nature of Eozooon canadense: Geol. Mag., Decade 4, vol. 2, October, November, and December, 1895, London. (Issued as separate, 17 pp.)

1896.

1897.

Note on Carboniferous Entomostraca from Nova Scotia, in the Peter Redpath Museum, determined and described by Professor T. Rupert Jones and Mr Kirby. (Reprinted from the Can. Rec. Sci., January, 1897.) Montreal, pp. 316-323. (McGill University, Montreal, paper from the department of geology, no. 7.)
Relics of primeval life, 336 pp., London, New York, etc. (Being lectures on pre-Cambrian fossils. Lowell Institute, Boston, 1895.)

1898.

The presentation of scientific communications was declared in order, and the first paper presented was

Physiographic Terminology with Special Reference to Land Forms

By W. M. Davis

Remarks were made by the President.

The second paper, read by the senior author, was entitled:

Camasland, a Valley Remnant

By George Otis Smith and George Carroll Curtis

Remarks were made by W. M. Davis, W. G. Tight, and the senior author. The paper is printed in full in this volume as pages 217 to 222.

The third paper was

Some Coast Migrations, Southern California

By Bailey Willis

The paper is printed as pages 417 to 432 of this volume.

The last paper of the morning session was then read:

Submerged Forest of the Columbia River

By G. K. Gilbert

The paper was discussed by S. F. Emmons, J. A. Holmes, and G. B. Shattuck.

The Society adjourned for luncheon, and reassembled in the afternoon. The first paper of the afternoon session was the following:

Physiographic Development of the Washington Region

By N. H. Darton

Remarks upon the subject of the paper were made by W. M. Davis.