
GSA DATA REPOSITORY ITEM 2018416

ADDITIONAL DATA REPOSITORY ITEMS

Table DR1
Table DR2

TABLE OF CONTENTS

Description of EPMA Methods................................. 1
Pressure-Temperature Plots... 2
40Ar/39Ar Geochronology Methods Description............. 3
Photomicrographs of Geochronology Samples...................... 5
References Cited... 9
DECIRIPTION OF EPMA METHODS

The chemistry of amphibole, white mica, chlorite, and garnet was investigated to classify mineral species, determine compositional trends, and estimate metamorphic temperatures during crystallization. Mineral compositions were measured by electron probe microanalysis (EPMA) using a Cameca SX-50 at the University of British Columbia, Canada (Table DR1). A 15 kV accelerating voltage and a 20 nA beam current was used for all samples. A beam diameter of 10 microns was used for white mica and chlorite and 5 microns for amphibole and garnet. Natural and synthetic standards were used for calibration. Mineral formulas and ferric iron contents were calculated using the program AX (Powell and Holland, 1994). Amphiboles were classified following the scheme of Hawthorne (2012) and using the Excel spreadsheet of Locock (2014). Mineral compositions are plotted in Figure 6.
Figure DR1: PT diagrams for the Easton Metamorphic Suite are shown above by rock unit. Colored lines are the locations of Fe/Mg exchange reactions determined by Thermocalc for
garnet-hornblende pairs in A, mica-chlorite pairs in B, E, and F, and garnet-phengite pairs in C. For D the mineral assemblage was used to bracket pressure and temperature. The locations of metamorphic reactions are shown with black lines: 1) Ab=Jd+Q (Thermocalc), 2) Cal=Arag (Thermocalc), 3) Anl+Q=Ab+H2O (Liou, 1971), 4) Wa=Lws+Q (Liou, 1971), 5) Lws=An+Q+F (Crawford and Fyfe, 1965), 6) Grt in (Spear, 2014), 7) Prh= Lws+Grs+Qtz (Perkins, et al., 1979), 8) Act+Chl+E+Ab+Q=Hbl+Pl+Q+F (Apted and Liou, 1983), and 9) Ab+Mm=Gln (Maresch, 1977).

\(^{40}\)Ar/\(^{39}\)Ar GEOCHRONOLOGY METHODS DESCRIPTION

\(^{40}\)Ar/\(^{39}\)Ar analyses were performed at the University of Vermont Noble Gas Geochronology Laboratory. Inclusion-free mineral grains were handpicked from crushed rock samples under a bioptic microscope after having been washed, sonicated, and dried to remove any adhering particulate matter. Grains from each sample were loaded into aluminum foil packets, arranged in a suprasil vial, and placed in an aluminum canister for irradiation. Samples were irradiated with multigrain aliquots of Fish Canyon Tuff sanidine to act as a flux monitor (28.201 Ma; Kuiper et al., 2008) to monitor the neutron dose, and Ca and K salts were also irradiated to determine corrections for interfering nuclear reactions. Samples were irradiated for 14 hours at the Cadmium-Lined In-Core Irradiation Tube (CLICIT) reactor of Oregon State University, Corvallis, Oregon, USA.

Laser step heating for \(^{40}\)Ar/\(^{39}\)Ar dating was conducted with a Santa Cruz Laser Microfurnace 75 W diode laser system. With the exception of flux monitors and muscovite, samples were loaded directly into wells in a copper sample holder. Sanidine and muscovite grains were loaded into degassed Nb foil packets before being loaded in the wells in the sample holder. The gas released during heating was purified with SAES getters and argon isotopes were analyzed on a Nu Instruments Noblesse magnetic sector noble gas mass spectrometer in peak-
hopping mode during step-heating analyses. Data from samples and flux monitors were corrected for blanks, mass discrimination, atmospheric argon, neutron-induced interfering isotopes, and the decay of 37Ar and 39Ar. Mass discrimination was calculated by analyzing known aliquots of atmospheric argon for which the measured 40Ar/36Ar was compared with an assumed atmospheric value of 298.56 (Lee et al., 2006). Correction factors used to account for interfering nuclear reactions for the irradiated samples are: $(^{40}$Ar/39Ar)$_{K} = 5.4 \times 10^{-4} \pm 1.4 \times 10^{-4}$ (Jicha and Brown, 2014), $(^{36}$Ar/37Ar)$_{Ca} = 2.65 \times 10^{-4} \pm 0.22 \times 10^{-4}$ (Renne et al., 2013), and $(^{39}$Ar/37Ar)$_{Ca} = 6.95 \times 10^{-4} \pm 0.09 \times 10^{-4}$ (Renne et al., 2013). A linear interpolation was used to calculate J factors for samples based on sample position between flux monitor packets in the irradiation tube. All ages were calculated using the isotope decay constants recommended by Steiger and Jäger (1977). The age calculations for inverse isochron and apparent age data were achieved using both an in-house data reduction program and Isoplot 3.0 (Ludwig, 2003).

Weighted mean ages are reported, and plateau ages are reported if sufficient criteria were met (as noted in main text). Errors on plateaus and weighted mean ages are quoted at the 2σ level and include precision associated with measurement of the irradiation parameter, J, for flux monitors.
Figure DR2: Sample FC-83, showing a primary garnet-pargasite assemblage in the S_2^A fabric, with retrograde intergranular glaucophane.
Figure DR3: Photomicrograph of geochronology sample FC-90, with coarse mineral phases in the S_2^N fabric labelled with text.
Figure DR4: Geochronology sample FC-36, showing sodic amphiboles with riebeckite cores and glauophane rims, alongside other coarse mineral phases labelled with text.
Figure DR5: Geochronology sample FC-52C showing phengite and chlorite in the S_2^G fabric, with albite.
Figure DR6: Geochronology sample FC-37 showing white mica and chlorite in the S_2^p fabric cross-cutting S_1^p, with finer-grained white mica and chlorite.
REFERENCES CITED

Andersson, J.O., Helander, T., Hoglung, L., Shi, P.F., and Sundman, B., 2002, Thermocalc and

Apted, J., M., Liou, J., G., 1983, Phase relations among greenschist, epidote-amphibolite, and

Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., and
Welch, M.D., 2012, Nomenclature of the amphibole supergroup: American Mineralogist,

Jicha, B.R. and Brown, F.H., 2014. An age for the Korath Range, Ethiopia and the viability of
\(^{40}\text{Ar}/^{39}\text{Ar}\) dating of kaersutite in Late Pleistocene volcanics. Quaternary Geochronology,
21, pp.53-57.
Synchronizing rock clocks of Earth history. science, 320(5875), 500-504.

A redetermination of the isotopic abundances of atmospheric Ar. Geochimica et

Liou, J.G., 1971, P—T Stabilities of Laumontite, Wairakite, Lawsonite, and Related Minerals in
the System CaAl2Si2O8-SiO2-H2O: Journal of Petrology, v. 12, p. 379–411, doi:
10.1093/petrology/12.2.379.

Locock, A.J., 2014, An Excel spreadsheet to classify chemical analyses of amphiboles following
the IMA 2012 recommendations: Computers & Geosciences, v. 62, p. 1–11, doi:

Ludwig, K.R., 2003. Isoplot/EX, rev. 3.00, a Geochronological Toolkit for Microsoft Excel:

Maresch, W., 1977, Experimental studies on glaucophane: An analysis of present knowledge:

relations of some minerals in the system CaO-Al2O3-SiO2-H2O: Geochimica et

Powell, R., and Holland, T., 1994, Optimal geothermometry and geobarometry: American
Mineralogist, v. 79, p. 120–133.

Renne, P.R., Deino, A.L., Hilgen, F.J., Kuiper, K.F., Mark, D.F., Mitchell, W.S., Morgan, L.E.,
Mundil, R. and Smit, J., 2013. Time scales of critical events around the Cretaceous-

1GSA Data Repository item 201Xxxx, geochronology and petrology methods and supplemental data, is available online at www.geosociety.org/pubs/ft20XX.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.