SUPPLEMENTAL INFORMATION

LOSCAR SIMULATION OF ETM-2

We apply the LOSCAR (Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4; Zeebe, 2012) climate/carbon-cycle model to simulate the ETM-2 carbon emission scenario given observations of CCD, planktic δ^{13}C and ΔSST (see Fig. DR2), with the goal of generating ΔpH estimates across the event so that pH-adjustments may be applied to planktic δ^{18}O and Mg/Ca. This model has been used extensively in previous research to simulate PETM and modern emission scenarios (Zachos et al., 2008; Zeebe et al., 2009; Sluijs et al., 2012; Zeebe, 2013; Zeebe and Zachos 2013; Penman et al., 2014; Zeebe et al., 2016). We apply the same boundary conditions (i.e., early Eocene ocean geometry and climate response functions based on early Eocene climate sensitivity) used in recent PETM simulations (Zeebe et al., 2016). We then simulate the carbon emission scenario by releasing 1,300 Pg C over 25 kyr, at time = 0 kyr (consistent with the astronomically-paced onset described in Lourens et al. (2005)), using an intermediate δ^{13}C of −40‰, with the aim of matching simulations to observations of the magnitude of the CIE and CCD changes (Fig. DR2). The ETM-2 simulation indicates a pH decrease of ~0.05. The temperature anomaly produced by this simulation falls within the range of pH-adjusted and non-adjusted Mg/Ca-based temperatures (Fig. DR3).

ANALYTICAL CHEMISTRY

Foraminifera (25 individuals) were crushed, homogenized, and split into two samples, one for trace elements and one for stable isotopes (δ^{13}C/δ^{18}O). Trace element samples were cleaned following the oxidative reductive protocol of Barker et al. (2003), dissolved in 0.075N HNO₃ and analyzed via ICP-MS on a Thermo Element XR following the methodology of Brown.
et al. (2011). The long-term reproducibility of consistency standard measurements indicates inter-run precision for Mg/Ca is <3% (2 s.d.).

The sample portion used for stable isotope analysis was not cleaned following oxidation/reduction protocol. These samples were analyzed on a Thermo MAT 253 IR-MS coupled to a Kiel IV carbonate device. Based on replicate measurements of consistency standards, inter-run precision for δ¹³C and δ¹⁸O is <0.1% (2 RSD) and <0.16% (2 RSD), respectively. The bulk %CaCO₃ ETM-2 record for Site 1209 was generated using a UIC Carbon Coulometer Analyzer.

ΔSST AND ΔSSS COMPUTATIONS

Planktic Mg/Ca is pH-adjusted using the LOSCAR-simulated ΔpH for ETM-2 following the logistic pH-adjustment from Evans et al. (2016):

\[
\text{Mg/Ca} = \frac{0.66}{1 + \exp \left(6.9 \times (\text{pH} - 8.8) \right)} + 0.76. \quad (1)
\]

Additionally, because Evans et al. (2016) could not rule out a linear fit to their data, we also include the linear pH-adjustment in our SST and SSS anomaly envelopes:

\[
\text{Mg/Ca} = -0.70 \times \text{pH} + 6.7. \quad (2)
\]

These pH-adjustments shift temperatures by <0.1°C due to the small pH decrease (~−0.05 pH units) we simulate for ETM-2. Furthermore, when larger magnitude boron-based ΔpH (~−0.11 pH units) is applied, the added effect on ΔSST is less than −0.1°C, and less than −0.2 ppt for ΔSSS (Fig. DR3). SST anomalies are generated using the pH-adjusted planktic Mg/Ca following Zachos et al. (2003):

\[
\Delta T = \frac{1}{A} \ln \left[\left(\frac{C}{100} \right) + 1 \right]. \quad (3)
\]

Where ‘C’ is the percent change in Mg/Ca relative to baseline and ‘A’ is the exponential constant in the Mg/Ca-temperature calibration (i.e., Mg/Ca-temperature sensitivity for a species of
foraminifera). Here we apply a range of ‘A’ values derived using culture calibration measurements of the modern species *G. ruber* in which Mg/Ca*seawater* was varied, following Evans et al. (2016). The best regression fits through the culture calibration data indicate a decrease in sensitivity (i.e., lower ‘A’ value) with lower Mg/Ca*seawater*. Given the possible range of Mg/Ca*seawater* in the early Eocene, we apply a range in ‘A’ values of 0.05 to 0.09 to generate SST anomaly envelopes. This method incorporates errors due to the potential uncertainty in Mg/Ca*seawater* for the early Eocene, however, it is still limited due to the fact that sensitivities are based on culture calibration of a single modern planktic foraminifera species. Anomaly envelopes do not incorporate any changes in Mg/Ca*seawater* across the hyperthermal, which is appropriate given the residence times of Mg and Ca in seawater (~13 Ma and ~1 Ma, respectively; Broecker and Peng, 1982) and the time interval of the anomaly envelope (~200 kyr).

To generate SSS anomaly envelopes, we assume any difference in pH-adjusted δ¹⁸O-based ΔSST compared to pH-adjusted Mg/Ca-based ΔSST is due to the effect of local surface salinity changes on δ¹⁸O. Mg/Ca-based ΔSSTs are converted into expected δ¹⁸O temperature anomalies following the relationship of 0.213‰/°C from Zachos et al. (2003). We then subtract the pH-adjusted (−2.51‰ per pH unit following Zeebe, 1999) observed δ¹⁸O anomaly from a theoretical temperature-based δ¹⁸O record generated using the Mg/Ca-based temperature change. This produces a residual δ¹⁸O anomaly. This residual value represents the surface salinity signal in planktic δ¹⁸O. SSS anomaly envelopes incorporate both the range in the Mg/Ca-temperature calibration constants and the possible range of the Δδ¹⁸Oseawater / ΔSSS relationship (0.25-0.50‰/salinity unit) from Zachos et al. (2003).

REFERENCES CITED

FIGURE CAPTIONS

Figure DR1. Bulk carbonate and carbonate nodule δ13C from pelagic ocean sites (ODP Sites 1265 and 1209; Stap et al., 2009 and Gibbs et al., 2012) and terrestrial Big Horn Basin Site (Abels et al., 2012) illustrate that the perturbation to carbon cycle during ETM-2 was global. Site 1265 ages are based on the bulk carbonate Site 1263 age model of Lauretano et al. (2016).
Figure DR2. LOSCAR carbon emission scenario for ETM-2: 1,300 Pg of carbon is released to atmosphere at time=0 kyr with $\delta^{13}C=-40\%$. pH simulations for the emission scenario are used to pH-adjust planktic Mg/Ca and $\delta^{18}O$.

Figure DR3. Sensitivity test showing the potential influence of pH adjustment on our SST and SSS records at Sites 1209 and 1265 using 3 different pH change scenarios. The black line represents constant pH. The red line represents a pH change of -0.05 pH units derived from LOSCAR simulations and used in this study. We show both the linear and logistic pH adjustments of Evans et al. (2016). Intermediate values for the Mg/Ca temperature calibration sensitivity (‘A’ value of 0.075) and intermediate $\delta^{18}O$-salinity sensitivity (0.33‰ per salinity unit) are applied instead of the ranges used previously to clearly display the change in the ΔSST and ΔSSS records for each ΔpH scenario.

Figure DR4. ΔSST and ΔSSS for the PETM at ODP Site 1209 using foraminiferal data (mixed-layer dweller *Acarinina soldadoensis*) from Zachos et al. (2003), which is pH-adjusted using Pacific surface ΔpH data from LOSCAR PETM simulations (Zeebe et al., 2009). SST envelopes are generated similarly to ETM-2 envelopes (Fig. 2) using a range of Mg/Ca-temperature sensitivities (‘A’ values from 0.05 to 0.09) and include both linear and logistic pH-adjustments from Evans et al. (2016). Note that the larger range in both SST and SSS envelopes shown here, compared with Zachos et al. (2003), is a function of the larger range of Mg/Ca temperature sensitivities given the recommendations of Evans et al. (2016) (see main text). The range in ΔSSS incorporates a range of $\delta^{18}O$-salinity sensitivities (the same range as the ΔSSS envelopes displayed in Fig. 2; 0.25-0.5‰ per salinity unit).
Bulk carbonate $\delta^{13}C$ (‰)
(Site 1265; Stap et al., 2009)

Carbonate nodule $\delta^{13}C$ (‰)
(Upper Deer Creek, Bighorn Basin WY; Abels et al., 2012)

Age - Site 1265 (Ma)

Stratigraphic position - Upper Deer Creek (m)

Meters composite depth - Site 1209 (armcd)

Fig. DR1
Fig. DR2

- **Atm CO₂**
 - Time (kyr)
 - Depth (m)

- **Atlantic pH**
- **Pacific pH**
 - Time (kyr)

- **Atlantic δ¹³C_DIC**
- **Pacific δ¹³C_DIC**
 - Time (kyr)

- **Atlantic CCD**
- **Pacific CCD**
 - Depth (m)
 - Time (kyr)
Fig. DR3

ODP Site 1209

A. Linear pH adjustment
B. Logistic pH adjustment
C. Linear pH adjustment

ETM-2

ODP Site 1265

E. Linear pH adjustment
F. Logistic pH adjustment
G. Linear pH adjustment
H. Logistic pH adjustment

Age (Ma)

ΔSST (°C)

ΔSSS (ppt)
Fig. DR4

The graph shows the SST (SST Anomaly [°C]) and SSS (SSS Anomaly [ppt]) anomalies for ODP Site 1209 over time relative to the CIE onset (kyr). The PETM is indicated by a shaded area. The graph includes data for ΔSSS and ΔSST (Mg/Ca).