Boiling induced formation of colloidal gold in black smoker hydrothermal fluids

Amy Gartman1, Mark Hannington2,3, John W. Jamieson4, Ben Peterkin4, Dieter Garbe-Schönberg5, Alyssa J. Findlay6*, Sebastian Fuchs2, Tom Kwasnitschka2

1: US Geological Survey, PCMSC, 2885 Mission St., Santa Cruz, California, 95060, USA
2: GEOMAR – Helmholtz Centre for Ocean Research Kiel, 1-3 Wischhofstr., 24148 Kiel, Germany
3: Department of Earth Sciences, University of Ottawa, Ottawa ON Canada, K1N 6N5
4: Department of Earth Sciences, Memorial University of Newfoundland St. John’s, NL, Canada
5: Institute of Geosciences, Kiel University, Ludewig-Meyn-Strasse 10, 24118 Kiel, Germany
6: Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel

* Current Address: Center for Geomicrobiology, Department of Biological Sciences, Aarhus University, Aarhus C, Denmark
1. Sampling Locations

All samples were collected from vents occupying a 500-m diameter explosion crater on the south flank of the Niua South volcanic cone (Fig. S1, Table S1).

Fig. S1. Location of the Niua Volcano at the northern termination of the Tonga volcanic arc (a). Niua is a large, 20-km long volcanic complex (b) comprising two volcanic cones (Niua North and Niua South). The Niua South hydrothermal field (c) occupies a 500-m diameter explosion crater on the southeast flank of the cone. Unpublished bathymetric data provided by Nautilus Minerals, Inc. and GEOMAR. Niua South first sampled by Resing et al., 2012.
<table>
<thead>
<tr>
<th>Location</th>
<th>Location</th>
<th>Sample (sulfide chimney)</th>
<th>Sample (fluid)</th>
<th>Depth (m)</th>
<th>T (°C)</th>
<th>pH</th>
<th>Mg (mM)</th>
<th>% seawater</th>
<th>Au (nM)</th>
<th>AVS +CRS (mM)</th>
<th>Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling</td>
<td>-15.16316167</td>
<td>-173.5746983</td>
<td>D1918-R4</td>
<td>1918 blue</td>
<td>1164</td>
<td>325</td>
<td>3.14</td>
<td>4.00</td>
<td>8</td>
<td>3.08</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1918 yellow</td>
<td>1163</td>
<td>325</td>
<td>3.84</td>
<td>14.98</td>
<td>28</td>
<td>3.68</td>
<td>0.39</td>
</tr>
<tr>
<td>Focused flow</td>
<td>-15.16286667</td>
<td>-173.5746367</td>
<td>N/A</td>
<td>1918 orange</td>
<td>1155</td>
<td>302</td>
<td>5.98</td>
<td>38.27</td>
<td>73</td>
<td>3.05</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1918 red</td>
<td>1155</td>
<td>302</td>
<td>4.12</td>
<td>23.58</td>
<td>45</td>
<td>2.91</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>-15.16476833</td>
<td>-173.5736017</td>
<td>D1919-R6 A,B</td>
<td>1919 yellow</td>
<td>1151</td>
<td>300</td>
<td>3.36</td>
<td>3.44</td>
<td>7</td>
<td>1.61</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1919 green</td>
<td>1151</td>
<td>300</td>
<td>4.73</td>
<td>27.96</td>
<td>53</td>
<td>2.03</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>-15.16466167</td>
<td>-173.5742267</td>
<td>D1919-R4</td>
<td>1919 grey</td>
<td>1155</td>
<td>316</td>
<td>3.62</td>
<td>12.11</td>
<td>23</td>
<td>3.11</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1919 red</td>
<td>1155</td>
<td>316</td>
<td>4.43</td>
<td>22.76</td>
<td>43</td>
<td>5.38</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>-15.16550167</td>
<td>-173.5739017</td>
<td>N/A</td>
<td>1920 blue</td>
<td>1146</td>
<td>278</td>
<td>4.57</td>
<td>31.09</td>
<td>60</td>
<td>3.00</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1920 orange</td>
<td>1142</td>
<td>250</td>
<td>4.14</td>
<td>31.36</td>
<td>60</td>
<td>26.73</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Table S1 - the locations and relevant chemical data for fluids, as well as gold concentrations (ppb, last column) for corresponding sulfide chimney samples. Details of sample measurements are included in the subsequent text. Percent seawater is derived from the concentration of magnesium in the sample and assuming a seawater concentration of 52.7 mM Mg, and an end member hydrothermal fluid concentration of 0 mM Mg.

2. **Fluid Sampling and Analysis**

Samples were collected by the remotely operated vehicle (ROV) ROPOS, using titanium major samplers (750 mL). Prior to sampling, the temperature of the orifice was measured using the high-temperature probe on the ROV. Four of the six sites were sampled in duplicate. Sampling
of the boiling vent resulted in the precipitation of a black tarnish on the sampler snorkel (Fig. S2), the tarnish was mainly composed of metal sulfides.

Fig. S2- Photographs pre (left) and post (right) sampling of the boiling vent, demonstrating the black tarnish observed to precipitate on the snorkel of the boiling sample. Similar tarnish was not observed after sampling any of the other vents. The tarnish was mainly composed of metal sulfides, and also contained abundant gold particles.

Samples were processed immediately upon shipboard recovery, 1-8 hours after sample collection, at which point the temperature and pH of the fluids within the samplers was also recorded. Shipboard temperatures were between 20 and 25°C. Separate aliquots were taken for measurement of major and trace elements, acid volatile sulfide/chromium reducible sulfur (AVS/CRS), and particle analysis. Whole fluids were used for both major element and trace element analysis. For major elements, samples were acidified with HCl to below pH 1 and immediately frozen at -20°C. Subsamples for trace elements were frozen whole without amendment. Samples for AVS/CRS were fixed with 1 M NaOH and 0.1 M zinc acetate for acid and also frozen at -20°C. Subsamples for particle analysis were centrifuged shipboard, according to the method described by Gartman et al. (2014).
Samples for major elements were further leached upon return to shore with nitric acid for at least 48 hours and then filtered through a 0.2 µm Puradisc Nylon filter, diluted 100 fold in 2% HNO₃ and analyzed on a Perkin Elmer NexION 300Q at the U.S. Geological Survey, Menlo Park, CA. Be 9, Ge 74 and Tl 205 were run as internal standards. Analytical precision determined by repeat analyses is better than 5%. Data for Mg are reported in this study; the other major elements will be reported elsewhere. The trace elements, including gold, were measured on whole samples (unfiltered) that were acidified in the laboratory with subboiled HNO₃. Insoluble precipitates in unfiltered aliquots were centrifuged and pressure-digested over night at 160°C in PFA vials (Savillex) using a multistep mixed acid procedure with HF-aqua regia. The digested liquids were analyzed with both matrix-matched calibration and standard addition by high resolution ICP-SF-MS (Thermo Scientific Element XR) in the ICP-MS Laboratory of the Institute of Geosciences, Kiel University, following the approach and methods described in Garbe-Schönberg (1993) and Koschinsky et al. (2008). Analytical precision determined by repeat analyses of fluid samples is <1-7% RSD. Limits of quantification (L.O.Q.) for each element, based on the whole procedure are determined by repeat analysis of blanks on each instrument and monitored by control samples and duplicates. The accuracy of the results was assessed by analyzing NASS-5 Reference Seawater (NRCC National Research Council of Canada), IAPSO Standard Seawater (International Association for the Physical Sciences of the Ocean), NIST Standard Reference Material 1640a and 1643e (National Institute of Standards and Technology), and two in-house standards (JUB-1 and CAU Anna Louise black smoker hydrothermal fluids). In-house standards were used for Au, as there are no certified reference data available for this element in seawater. The Au blank was 0.07 ng/kg; nearly 4 orders of magnitude lower than the lowest measured Au concentration in the sampled liquids. This, together with the uniformly high values in all
samples, indicates that gold concentrations measured in the liquids cannot be traced to sampling methodology or laboratory procedures. Data for total Au (dissolved plus particulate) are reported in this study; results for the other trace elements will be reported elsewhere.

AVS/CRS were measured following the sequential method of Fossing and Jørgensen (1989) as presented in Yücel et al. (2011) and Gartman et al. (2014). AVS was distilled under nitrogen flow upon addition of 5 mL HCl (5 M) for 1.5 hours and was trapped as ZnS in 10-15 mL of anoxic zinc acetate (5 % w/v). CRS was then distilled for one hour after injection of 5 mL acidified Cr(II) (1.2 M). The Cr(II) solution was prepared by reducing a Cr(III) solution with zinc metal under nitrogen flow. Sulfide in the traps was quantified using the methylene blue spectroscopic method (Cline, 1969) at 665 nm. The detection limit for this method is 1 µM sulfide.

Fluid samples were prepared for SEM/EDS by resuspending centrifuged pellets (prepared shipboard) into Milleq® water, then evaporated directly onto 12.5 mm Ted Pella Inc. aluminum stubs. The samples were then rinsed several times with Milleq® water to remove salts, and run on a Tescan VP-SEM in high vacuum mode, without conductive coating. Imaging was performed using both secondary electron and backscatter detectors. Elemental analyses were performed at 20 kV and 14 mm working distance. The detection limit for elemental analysis is 0.1 wt% for a flat sample. Particle dimensions were measured using ImageJ; for Fig. 3, the dimensions for each particle were averaged.
For the chimney sections, mineral identification and trace element composition analyses were performed on raw and epoxy-mounted slabs using a FEI MLA 650F SEM/EDS detector under high vacuum. Images were captured using both electron backscatter and secondary electron imaging. Analysis of slabs was preferred over polished thin sections to avoid the possibility of Au grains being removed during polishing. Slabs were carbon coated prior to analysis. Elemental analyses were performed at 25 kV and a working distance between 13.6 and 15.1 mm. The detection limit for flat samples is 0.1 wt%.
Fig. S3- Supporting SEM information. Top to bottom, map of Au Mα for the Au particle shown in Fig. 2B, center, EDS spectra for the same particle, collected at 20 kV, and bottom, secondary electron (left) and backscatter (right) micrograph of a gold particle from the diffuse flow, sulfide chimney; in the secondary electron image, the gold is outlined, and in the backscatter image, the arrows indicate the location of apparent colloids.

4. Chimney Sampling and Analysis

Paired samples of chimney material (mainly lining the orifice of the sampled vents) were collected for mineralogy and bulk geochemistry. Bulk gold concentrations in the chimney samples (Table S1) were determined by instrumental neutron activation analyses (INAA) performed by Activation Laboratories, Ancaster, Ontario.

5. Observed snorkel tarnish and fluid boiling

The pressure and temperature of fluid boiling is plotted after Bischoff, 1991 (Fig. S4). The grey line is the boiling curve from Bischoff,. The red X represents the boiling vent from Niua, given the temperature measured in situ and the calculated pressure at the depth of collection, which plots on the boiling curve. The orange +s represent the same parameters for the other samples from Niua. All other samples are cooler than the boiling temperature at the depth of sampling.
6. Gold Saturation States of Pre-Boiled Liquids

Gold solubility was calculated based on the estimated pre-boiling composition of the vent fluids (T, pH, H₂, and H₂S). pH was assumed to be the measured pH at 25°C plus 1.25 pH unit. H₂ was estimated from the PEQMAP buffer (plagioclase-epidote-quartz-magnetite-anhydrite-pyrite) commonly used for seafloor hydrothermal fluids after Seyfried and Ding (1995) and Seyfried et al. (1999). H₂S concentrations were assumed to be equivalent to the measured AVS+CRS values, although these are minimum values for the pre-boiled fluid, as the samples were collected post-boiling and gases are assumed to be lost upon boiling. Chloride was assumed to be equivalent to preboiled seawater (540 nM). Equilibrium constants were calculated using the HCh software package (Shvarov, 2008). Thermodynamic data for the different aqueous gold species are taken from the compilation of Pokrovski et al. (2014), including the data of Akinfiev and Zotov (2010). Data for other species (e.g., PEQMAP buffer) are taken from most recent version of the SUPCRT92 database (Johnson et al., 1992). The calculated total solubilities for all aqueous species are compared to the measured concentration of Au (including particles) in the sampled fluids in Fig. S3. Except for the low-temperature diffuse vent (250°C), the sampled fluids are all...
strongly undersaturated relative to the calculations performed for fluids prior to boiling. Boiling and loss of H$_2$S must drive the fluid to lower total Au solubility, thus causing precipitation of the Au colloids.

![Graph showing calculated solubilities for fluids from Niua, assuming conditions prior to seafloor emission and prior to boiling.](image)

Fig. S5- Calculated solubilities for fluids from Niua, assuming conditions prior to seafloor emission and prior to boiling.

SUPPLEMENTARY REFERENCES

