Expanded glaciers during a dry and cold Last Glacial Maximum in equatorial East Africa

Meredith A. Kelly1*, James M. Russell2, Margaret B. Baber1, Jennifer A. Howley1, Shannon E. Loomis2, Susan Zimmerman3, Bob Nakileza4, and Joshua Lukaye5

1Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
2Department of Geological Sciences, Brown University, Providence, Rhode Island, USA
3Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California, USA 94550
4Mountain Resource Centre, Makerere University, Kampala, Uganda
5Petroleum Exploration and Production Department, Entebbe, Uganda

*Corresponding Author

DATA REPOSITORY (Table DR1)
Table DR1.

CAMS number	Sample name	Lat. (°)	Long. (°)	Elev. (m asl)	Sample thick. (cm)	Shld. corr.	Quartz wt. (g)	\(^{10}\text{Be} / ^{9}\text{Be} \pm 1\sigma \text{ (10}^{-12}) & 10\text{Be} \pm 1\sigma \text{ (10}^{5} \text{ at g}^{-1}) & 10\text{Be} \text{ age} \pm 1\sigma \text{ (yrs ago)}				
BE34425	RZ-1	0.3583	29.9791	2635	2.14	0.994	6.0131	0.2091	07KNSTD 3110	1.255±0.024	2.916±0.056	21,790±420
BE34430	RZ-7	0.3503	29.9681	2955	1.00	0.978	5.9925	0.2135	07KNSTD 3110	1.458±0.049	3.470±0.118	21,910±750
BE34431	RZ-8	0.3499	29.9680	2953	2.13	0.978	5.9983	0.2147	07KNSTD 3110	1.428±0.029	3.415±0.070	21,790±450
BE34432	RZ-9	0.3521	29.9693	2922	1.00	1.000	6.0115	0.2108	07KNSTD 3110	1.394±0.027	3.266±0.062	20,530±390
BE34426	RZ-2	0.3469	29.9680	2988	2.26	1.000	6.0026	0.2112	07KNSTD 3110	1.697±0.032	3.989±0.076	24,480±470
BE34427	RZ-3	0.3460	29.9680	2988	1.79	1.000	6.0282	0.2103	07KNSTD 3110	1.740±0.033	4.056±0.077	24,790±480
BE34428	RZ-4	0.3450	29.9690	2986	2.32	1.000	6.0002	0.2131	07KNSTD 3110	1.758±0.039	4.173±0.093	25,650±580
BE34429	RZ-5	0.3441	29.9686	2989	2.89	1.000	5.9939	0.2117	07KNSTD 3110	1.708±0.033	4.030±0.077	24,840±480

Note: Samples were prepared at Dartmouth College using the Beryllium carrier “Dartmouth 4G Bery” with a concentration of 1.320 ppm. Beryllium ratios were measured at CAMS LLNL.
Table DR1. 10Be sample data and calculated 10Be surface exposure ages. Shown are sample latitudes (Lat.), longitudes (Long.) and elevations (Elev.), sample thicknesses (Sample thick.), correction factors for sample surface slopes and topographic shielding (Shld. corr.), sample quartz amounts (Quartz wt.), 9Be carrier amounts, accelerator mass spectrometer (AMS) standards used, AMS measured 10Be/9Be ratios and 1σ uncertainties, calculated 10Be concentrations (in 10^5 atoms per gram [10^5 at g$^{-1}$]), and calculated 10Be ages.

We collected samples for 10Be dating from the top center surfaces of flat-lying and low-sloping, large, quartz-rich boulders in stable positions on the crests of Lake Mahoma Stage moraines using a hammer, hammer drill and chisel. In the field, we recorded sample locations using a handheld global positioning system unit. To determine shielding corrections, we measured the slope of the sample surface using a compass and determined the azimuthal elevations of the horizon using a clinometer. In the cosmogenic nuclide laboratory at Dartmouth College, we measured the thicknesses of whole rock samples using millimeter-scale precision calipers and then calculated average mass-weighted sample thicknesses.

We crushed and sieved whole rock samples and used the 250-750 µm fraction for quartz purification. We used a series of chemical leaching methods to obtain pure quartz and isolate beryllium from this quartz following the methodology described in Schaefer et al. (2009). 10Be/9Be ratios were measured relative to the 07KNSTD3110 standard (Nishiizumi et al., 2007) at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory (CAMS LLNL). All ratios were corrected for residual...
boron concentrations (<1%). The procedural blank had a $^{10}\text{Be}/^{9}\text{Be}$ ratio of $\sim2.5 \times 10^{-16}$ and blank corrections were less than 1%.

We used the Cosmic-Ray Produced Nuclide Systematics on Earth Project (CRONUS-Earth Project) online calculator (Balco et al., 2008) version 3 to calculate ^{10}Be ages. We report ^{10}Be ages calculated using a ^{10}Be production rate that was determined for a low-latitude, high-altitude location (Kelly et al., 2015) with time-invariant scaling after Lal (1991) and Stone (2000; i.e., “St”). We assumed the default height-pressure relationship (i.e., Balco et al., 2008) for all samples.

^{10}Be age uncertainties shown are those associated with AMS measurement and do not take into account ^{10}Be production rate or geological uncertainties. We estimate that the production rate uncertainty is $\sim6\%$ (http://cosmognosis.wordpress.com/). Shielding corrections were all less than 3%. We did not correct the ^{10}Be ages for the influence of snow or vegetation cover or for boulder surface erosion. Snow cover would be extremely rare or short-lived at the sample sites, where mean annual temperature is ~10° C. The sampled boulders are currently located in a mixed forest zone with dominant vegetation types of *Podocarpus* and bamboo. Vegetation and loosely compacted organic debris covered all boulder surfaces and ranged in thickness between ~0.15 and 0.5 m. A study by Plug et al. (2007) indicates that cover of rock surfaces by temperate forest vegetation may reduce the ^{10}Be production rate by ~2-7%. Granular erosion of some surfaces was observed. Based on the excellent internal consistency of ^{10}Be ages from individual landforms, and agreement with a previously published radiocarbon age, we assume that the vegetation cover and minor erosion have had negligible influences on the ^{10}Be ages.
REFERENCES CITED

