Numerical Setup and Boundary Conditions

The 3-D computational domain is 2000 km long, 200 km wide, and 200 km deep (Fig. DR1a). This domain represents the lithosphere and upper asthenosphere across a passive margin (straight or curved), in the middle of the model, with a continent/ocean boundary dipping 45° toward the continent. The model resolution was 2 km everywhere.

The lithospheric structure in the present models is similar to that used in Nikolaeva et al. (2011) for the SE Brazilian margin. The oceanic domain does not initially include sediments, but sediments fill the trench after its arcward slope reaches a critical angle of 17° and prescribed erosion takes place. The material properties and used parameters are listed in Tables DR1 and DR2. The model geometry, particularly for the ocean-continent transition depicted in Figure DR1a, is based on the conceptual model for passive margin generation (e.g., Whitmarsh et al., 2001). According to this model, an initial asthenospheric upwelling during break-up leads to thinning of the overlying lower continental crust before the breakup of the continent. As the asthenosphere continues to ascend it undergoes decompression melting, which results in the formation of oceanic lithosphere and subsequent seafloor spreading. The boundary between the oceanic and continental lithosphere thus dips toward the continent.

The temperature structure of the model lithosphere is controlled by its thickness and is defined by a linear profile from 0 °C at the surface to a prescribed temperature at the base of the lithosphere. The initial temperature gradient in the asthenospheric mantle was 0.5 °C km⁻¹.

The velocity boundary conditions are free slip at the top (Y = 0), and at the front and back boundaries (Z = 0 and 200 km). The left and right boundaries are fixed. For the permeable lower boundary condition (e.g., Burg and Gerya, 2005; Gerya et al., 2008; Li et al., 2010), an external outflux boundary implies constant normal velocity and zero shear stress conditions to be satisfied at ~200 km below the base of the model domain. The external boundary condition allows global conservation of mass in the computational domain and is implemented by using a limitation for velocity components at the lower boundary.

We imposed an internal erosion/sedimentation surface at the top of both plates by using a 10 km thick top layer of “sticky air” with a low density (1 kg m⁻³) and viscosity of 10¹⁸ Pa s. A 4 km thick layer of “sticky sea water” (density = 1000 kg m⁻³, viscosity = 10¹⁸ Pa s) is located between the oceanic lithosphere and the “sticky air” layer. The large viscosity contrast between the “sticky” layers and lithosphere minimizes shear stresses (< 10⁴ Pa) across their interface, allowing the surface of the lithosphere to behave essentially as a free surface. The validity of the weak layer approach for approximating the free surface was recently benchmarked using a large variety of numerical techniques (Schmeling et al., 2008) (including the I3ELVIS code used here) and compared with analogue models.

Fluid/Melt Transport Mechanism

In order to simulate the migration of water released by dehydration, we used independently moving rock and fluid markers (Gorczyk et al., 2007). The maximum stable water content for each lithology was calculated by free energy minimization (Connolly, 2005)
as a function of pressure and temperature from thermodynamic data by the Perple_X program (Connolly, 2005; Gerya et al., 2006). The initial water content is zero everywhere, except in the basaltic and sedimentary crust where, in addition to mineralogical water, a porous water content is specified as a linear function of depth:

\[X_{H_2O(p)} \text{(wt\%) = } X_{H_2O(p),0}(1 - 0.013\Delta y) \]

(1)

where \(X_{H_2O(p),0} = 2 \text{ wt\%} \) is the porous water content at the surface, and \(\Delta y \) is the depth below the surface in km (0–75 km). The subsequent release of this water also mimics the effects of low-temperature (< 300 °C) reactions that are not included in our thermodynamic database.

A fluid marker with a particular water amount is generated when the local water concentration exceeds the maximum concentration that can be held, and moves upwards until it reaches a lithology that assimilates water. Up to 2 wt% of water can be absorbed by hydrated mantle under supersolidus conditions, in agreement with seismic constraints (Bostock et al., 2002; Carlson and Miller, 2003). Solid mantle that could melt with the addition of water can absorb a maximal bulk water content of 0.5 wt%, consistent with typical conditions of fluid-fluxed melting in subduction zones (Kelley et al., 2006).

The velocity of water in the wedge is computed according to pressure gradients (e.g., Faccenda et al., 2009, 2012) as:

\[v_{x(water)} = v_x - A \frac{\partial P}{\partial x} \]
\[v_{z(water)} = v_z - A \frac{\partial P}{\partial z} \]
\[v_{y(water)} = v_y - A(\frac{\partial P}{\partial y} - \rho_{fluid}g_y) \]
\[A = \frac{v_{percolation}}{g_y(\rho_{mantle} - \rho_{fluid})} \]

where \(y \) is the vertical coordinate, and \(x \) and \(z \) are respectively horizontal and lateral (along strike) coordinates (Fig. DR1); \(v_x, v_y \) and \(v_z \) indicate the local velocity of the solid mantle; \(A \) is a water percolation constant; \(v_{percolation} = 10 \text{ cm/yr} \) is a pre-assumed standard water percolation velocity, which is in the range of the typical large-scale water transport velocities (1–10 cm/yr) in the mantle wedge (e.g. Peacock, 1990; Gorczyk et al., 2007; Nikolaeva et al., 2008); \(g_y = 9.81 \text{ m/s}^2 \) is the gravitational acceleration; \(\rho_{mantle} = 3300 \text{ kg/m}^3 \) and \(\rho_{fluid} = 1000 \text{ kg/m}^3 \) are the densities of the mantle and fluid, respectively. The moving water is consumed by hydration and melting reactions with the mantle located atop the slab.

When the amount of melt reaches the melt extraction threshold, a very fast upward melt migration rate is assumed in all models (e.g., Hawkesworth et al., 1997; Hall and Kincaid, 2001; Nikolaeva et al., 2008; Hebert et al., 2009; Connolly et al., 2009). This instantaneous upward melt movement assumption does not account for lateral melt percolation phenomena driven by horizontal pressure gradients (e.g., Spiegelman and McKenzie, 1987). In a simple way, extracted melt is assumed to be instantaneously removed from the source region to the surface as extrusive volcanics, without considering its emplacement underneath the continental crust (Gerya and Meilick, 2011; Vogt et al., 2012). Also, similarly to Nikolaeva et al. (2008), we concentrate on fluid-fluxed melting processes
atop the slab, and do not model shallow decompression melting of the dry mantle under back-
arc spreading centers.

Partial Melting and Melt Extraction

The degree of melting of hydrated peridotite is computed as a function of pressure, temperature and water content using the parameterization of Katz et al. (2003). The degree of melting of subducted crustal rocks is calculated according to the simpler linear melting model (Gerya and Yuen, 2003; Zhu et al., 2009, 2011):

\[
M_0 = \begin{cases}
0 & \text{at } T<T_{\text{solidus}} \\
(T-T_{\text{solidus}})/(T_{\text{liquidus}}-T_{\text{solidus}}) & \text{at } T_{\text{solidus}}<T<T_{\text{liquidus}} \\
1 & \text{at } T>T_{\text{liquidus}}
\end{cases}
\]

(3)

where \(M_0\) is the volumetric fraction of melt with temperature \(T\); \(T_{\text{solidus}}\) and \(T_{\text{liquidus}}\) are, respectively, the solidus temperature (wet and dry solidi are used for the hydrated and dry mantle respectively) and the dry liquidus temperature (see Table 1 in Zhu et al., 2013).

For model simplicity, the melt extraction threshold in our model is the same for all types of melt. Although it can be lower for low-viscosity basaltic melts, it can be notably higher for the more viscous granitic and dacitic melts present in our models. Faul (2001) has shown that a deep, volatile-rich melt with low viscosity and density is mobile at 0.1% porosity, but basaltic melt only becomes mobile at a porosity above 1%. Nikolaeva et al. (2008) varied melt extraction threshold from 0.2 to 30% melt fraction to find its influence on crust production. Here we use an intermediate value for the melt extraction threshold \(M_{\text{max}}\) of 4% or 6%, and a non-extractable melt fraction (that remains in the source region) \(M_{\text{min}}\) of 2% or 3%, similar to previous 2-D models (Nikolaeva et al., 2008; Gerya and Meilick, 2011; Vogt et al., 2012). The amount of melt extraction is tracked by markers during the evolution of each experiment. In order to avoid over-extraction of melts from the moving rock markers, and keep non-extractable melt in the mantle, the total amount of available melt \(M\) for every marker takes into account previously extracted melt, and is calculated as:

\[
M = M_0 - \sum_n M_{\text{ext}}
\]

(4)

where \(\sum_n M_{\text{ext}}\) is the total melt fraction extracted during the previous \(n\) extraction episodes. In our model, the rock is considered non-molten (refractory) when the extracted melt fraction is larger than the standard one (i.e., when \(\sum_n M_{\text{ext}} > M_0\)). When the total amount of melt \(M\) exceeds the threshold \(M_{\text{max}}\), the melt fraction \(M_{\text{ext}} = M - M_{\text{min}}\) is extracted and \(\sum_n M_{\text{ext}}\) is updated. After each melt extraction episode, only non-extractable melt remains in the source region (\(M = M_{\text{min}}\)). Starting from this moment, the total amount of melt \(M\) in the source region varies dynamically according to (4) and (5), until it again reaches the \(M_{\text{max}}\) threshold and another melt extraction episode takes place, as is schematically presented (Zhu et al., 2013). The extracted melt fraction \(M_{\text{ext}}\) is assumed to propagate upward to the surface much faster than the mantle rocks deform (Elliott et al., 1997; Hawkesworth et al., 1997). Hence, the instantaneous transmission of extracted melt to the surface is reasonable. At the surface, extracted melt markers create a volcanic arc and thereby retain their volume and composition. The effective density \(\rho_{\text{eff}}\) of partially molten rock is calculated as:
\[
\rho_{\text{eff}} = \rho_{\text{solid}} (1 - M + M \frac{\rho_{\text{molten}}}{\rho_{\text{solid}}})
\]

(5)

where \(\rho_{\text{solid}}\) and \(\rho_{\text{molten}}\) are the standard densities of solid and molten rock, respectively (see Table 1 in Zhu et al., 2013), and \(\rho_{\text{solid}}\) is the density of solid rocks at given \(P\) (MPa) and \(T\) (K) computed from:

\[
\rho_{\text{solid}} = \rho_{0\text{solid}} \times [1 - (\alpha_{\text{molten}} M + \alpha_{\text{solid}} (1 - M)) (T - 298)] \times [1 - (\beta_{\text{molten}} M + \beta_{\text{solid}} (1 - M)) (P - 0.1)]
\]

(6)

where \(\alpha\) and \(\beta\) represent the thermal expansion and the compressibility of rocks (see Table 1 in Zhu et al., 2013). Due to the applied melt extraction, the actual density difference between solid and partially molten rocks is rather small in our models.

Rheological Model

The viscosity in our models depends on strain rate (defined in terms of deformation invariants), pressure and temperature according to standard experimentally determined flow laws (Ranalli, 1995) as:

\[
\eta_{\text{creep}} = (\dot{\varepsilon}_{ij})^{(1-n)/2} (A_D)^{-1/n} \exp\left(\frac{E_a + PV_a}{nRT}\right)
\]

(7)

where \(\dot{\varepsilon}\) is the second invariant of the strain rate tensor, and \(A_D, E_a, V_a, \text{ and } n\) are experimentally determined flow law parameters (see Table 1 in Zhu et al., 2013).

The ductile rheology is combined with a brittle/plastic rheology to yield an effective visco-plastic rheology. For this purpose the Drucker-Prager yield criterion (Ranalli, 1995) is implemented by a limiting creep viscosity, \(\eta_{\text{creep}}\), as follows:

\[
\eta_{\text{creep}} \leq \frac{c + P \sin(\varphi)}{4 \dot{\varepsilon}_{it}^{1/2}}
\]

(8)

where \(P\) is the complete (non-lithostatic) pressure (i.e., the mean stress), \(c\) is the cohesion (residual strength at \(P = 0\)), and \(\varphi\) is the effective internal friction angle (see Table 1 in Zhu et al., 2013). Assuming high pore fluid pressure in hydrated rocks (Gerya et al., 2008), the upper oceanic crust (basalts and sediments) are characterized by \(c = 1\) MPa and \(\sin\varphi = 0\).
REFERENCES CITED

Ranalli, G., 1995, Rheology of the Earth. 2nd ed Chapman & Hall.
Table DR1. Properties of model layers.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Flow law</th>
<th>Thickness (km)</th>
<th>Density (kg m(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>(10^{18}) Pa s</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Upper Continental Crust</td>
<td>Wet Quartzite</td>
<td>33</td>
<td>2700</td>
</tr>
<tr>
<td>Lower Continental Crust</td>
<td>Wet Quartzite</td>
<td>12</td>
<td>2900</td>
</tr>
<tr>
<td>Continental Mantle</td>
<td>Wet Olivine</td>
<td>35</td>
<td>3250</td>
</tr>
<tr>
<td>Water</td>
<td>(10^{18}) Pa s</td>
<td>3</td>
<td>1000</td>
</tr>
<tr>
<td>Oceanic Crust</td>
<td>An75</td>
<td>8</td>
<td>3100</td>
</tr>
<tr>
<td>Oceanic Mantle</td>
<td>Wet Olivine</td>
<td>77</td>
<td>3300</td>
</tr>
<tr>
<td>Asthenosphere</td>
<td>Wet Olivine</td>
<td>200 km</td>
<td>3300</td>
</tr>
</tbody>
</table>

The remaining to 200 km 3300

Table DR2. Model parameters.

<table>
<thead>
<tr>
<th>Model</th>
<th>Density Contrast (kg/m(^3))</th>
<th>Thickness Continental Crust (km)</th>
<th>Thickness Continental Mantle (km)</th>
<th>Total Thickness Continental Lithosphere (km)</th>
<th>Total Depth Continental Lithosphere (km)</th>
<th>Temperature at base of Continental Lithosphere (K)</th>
<th>°</th>
<th>°</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>45</td>
<td>35</td>
<td>80</td>
<td>92</td>
<td>1619</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>45</td>
<td>35</td>
<td>80</td>
<td>92</td>
<td>1619</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>45</td>
<td>35</td>
<td>80</td>
<td>92</td>
<td>1619</td>
<td>40</td>
<td>45</td>
</tr>
</tbody>
</table>
Figure DR1. Color maps representing the model temperatures in the initial stage (A), and at the front wall in the last stage of Models 1, 2 and 3. Note the higher temperature, from B to D, in the core of the sinking slab.
Figure DR2. xz plots of the velocity field. In color the y component, and as vectors (white arrows) the xz component. A, B and C for Models 1, 2 and 3 respectively. Note the great incorporation of the z component, towards the front wall (bottom), from A to C. Zero in A, as expected for a 2-D equivalent model, and maximum in C. Positive and negative values in the scale bar mean downward and upward flows, respectively.