Figure DR1. Field photographs illustrating the lithological characteristics, field relationships, and primary igneous structures in the Fiskenæsset Complex. (a) Leucogabbro-anorthosite and amphibolite (basaltic rock) contact at Qeqertarsuatsiaq. (b) Igneous layering characterized by dunite, peridotite, gabbro and leucogabbro layers at Sinarssuk. (c) Igneous layering consisting of leucogabbro and anorthosite at Sinarssuk. (d) Chrome-spinel cumulates in dunite-peridotite at Sinarssuk. (e) Hornblende Gabbro at Sinarssuk. (f) Leucogabbro with large zoned plagioclase crystals and hornblende interstitial at Sinarssuk. Figures (a), (b) and (c), and (d) are from Polat et al., 2009, 2011, and 2010, respectively.
Figure DR2. Scanning electron microscope (SEM) backscattered electron (BSE) images of the Fiskenaesset Complex. The presence of amphibole as a primary igneous mineral implies a hydrous magmatic source. (a) Chrome (Cr)-spinel cumulate layer in dunite. (b and c) Chrome-spinel cumulates containing amphibole grains as inclusions and an interstitial phase. (d) Olivine and amphibole grains displaying an indented grain boundary marked by a train of anhedral magnetite grains, signifying a reaction between olivine and hydrous melt. (e) Polygonal amphibole (amp), orthopyroxene (opx) grains, displaying sharp to indented grain boundaries with olivine (oli). (f) An intergrowth of symplectitic (vermicular) magnetite and orthopyroxene situated between amphibole and olivine. Olivine: oli, amphibole: amp, orthopyroxene: opx, clinopyroxene: cpx, magnetite: mgt, and ser: serpentine. Figures (d), (e), and (f) are from Polat et al. (2012).
REFERENCES CITED


