Reconciling geologic and geodetic fault-slip-rate discrepancies in southern California: consideration of non-steady mantle flow and lower crustal fault creep

Supplementary Online Materials

INTERSEISMIC MODEL: STRESS-DRIVEN CREEP

As stated in the main text, the model used in this study is described in Huang et al. (2010) and Johnson and Fukuda (2010). These studies build on Johnson and Segall (2004) who developed a boundary element solution for stress-driven intersesismic creep below the locking depth of an infinitely-long, strike-slip fault in an elastic plate over a viscoelastic substrate. Above the fault locking depth, periodic earthquakes are imposed and the fault is completely locked between earthquakes. Below the locking depth, the fault creeps as a thin linear viscous shear zone. In this study, and in Huang et al. (2010) and Johnson and Fukuda (2010), we consider the special case of the Johnson and Segall (2004) model in which the viscosity of the shear zone is zero. However, this study is different from Huang et al. (2010) and Johnson and Fukuda (2010) in that we approximate the deep creep on faults with a uniform creep rate proportional to the depth-averaged shear stress rate on the fault (as opposed to considering depth-variable creep rates).

Figure DR1a shows the creep rate below a fault locked down to 10 km depth in an elastic plate of thickness 20 km for different ratios of recurrence time to asthenosphere relaxation time, T/tr. For the case T/tr = 1, the fault creeps at a nearly steady rate throughout the earthquake cycle and the creep rate tapers from the full long-term fault slip rate at the base of the elastic plate to zero just below the locking depth. As the ratio T/tr increases, the creep rates vary more significantly throughout an earthquake cycle; early in the cycle the creep rate on the fault might exceed the long-term rate and late in the cycle the creep rate may be less than half the long-term rate. Figure DR1 shows the predicted surface velocities across the fault at different times in the earthquake cycle, expressed as the ratio t/T. Blue curves show the Johnson and Segall (2004) model prediction and the green curves show the Savage and Prescott (1978) model prediction assuming steady creep at the long-term rate below the locking depth. The Savage and Prescott (1978) steady creep model predicts higher velocities than the Johnson and Segall
(2004) model mid-way and late in the earthquake cycle because the creep rate is lower at these times in the Johnson and Segall (2004) model. Figure DR1 suggests that neglecting time-variable fault creep could lead to biased estimates of fault slip rates and locking depths.

The creep rate on the fault is a function of the stress on the fault at any given time which is dependent on the history of slip on the fault. Let T be the recurrence time of earthquakes, let s' be the long-term fault slip rate, and let $\dot{s}_c(t, z)$ be the instantaneous creep rate at depth z on the fault. We require that the total stress is zero on the creeping part of the fault at some time, t, after initiation of sliding at $t = -\infty$,

$$
g^U_c(t - t_{eq}, z, T)\dot{s} + \int_{-\infty}^{t} \int_{H}^{D} g^L_c(t - \tau, \xi, z) \frac{\partial \dot{s}_c(\tau, \xi)}{\partial \xi} d\xi d\tau = 0$$

where the first term gives the stress at depth z and time t due to slip below the locking depth at depth z_0 and time t_0. In this notation, the subscripts on g denote either creep (c) or earthquake slip (e) and the superscript denotes slip on either the upper (U) or lower (L) part of the fault (above or below the locking depth). Johnson and Segall (2004) solved this equation with a boundary element approach. That method is computationally expensive and requires computing the slip at all times and depths throughout all earthquake cycles on all faults. Here we use an approximate form of the equation that can be solved efficiently. The approach is to assume a simple slip history, illustrated in Figure DR2, in which the fault slips during earthquakes uniformly from the surface to the locking depth by amount sT and uniformly from the locking depth to the bottom of the elastic plate by a lesser amount, $(s - \dot{s}_c)T$, where \dot{s}_c is the yet-to-be-determined steady interseismic creep rate. This slip rate history is computed assuming the instantaneous stress rate on the fault at the time of observation is zero

$$
\dot{g}^U_c(z, t - t_{eq}) sT + \dot{g}^L_c(z, t - t_{eq})(s - \dot{s}_c)T + \dot{g}^L_c(z) \dot{s}_c = 0
$$

where the dot denotes time derivative, \dot{g}^U_c is the same as above, $\dot{g}^L_c(z, t - t_{eq})$ is the stressing rate at depth z and time $t - t_{eq}$ due to coseismic slip below the locking depth, and $\dot{g}^L_c(z)$ is the stressing rate at depth z due to steady creep below the locking depth.

The interseismic creep rate is then,
\[
\dot{s}_c = \frac{\dot{s} \left(\dot{g}_c^U + \dot{g}_c^L \right)}{\dot{g}_c^L - T \dot{g}_c^L}
\]

Figure DR1. (a) Interseismic creep rates predicted by the Johnson and Segall (2004) model. Each blue curve is the creep rate at equally spaced times in an earthquake cycle for various cycle parameters, \(T/t_R\). The vertical dashed green lines are the approximate constant-stress model predictions of instantaneous creep rate at the observation time and the red curves are the corresponding instantaneous creep rates in the Johnson and Segall (2004) model at the same times. (b)-(d) compare surface velocity profile predictions for

Figure DR2. Top: slip evolution over three earthquake cycles computed using the Johnson and Segall (2004) model. Bottom: assumed slip history in the approximate constant-stress model.

EXPLANATION OF SLIP RATE DATA

We found that along most of major faults, geologic slip rates adopted by WGCEP (2008) are in agreement with other published studies, except for the San Bernardino and Coachella segments of the San Andreas fault and San Jacinto fault. Along the San Bernardino segment, fault-slip rates decrease north to south from 25 mm/yr (Weldon and Sieh, 1985) to 11 mm/yr (McGill et al., 2008). WGCEP (2008) assigns 18 and 20 mm/yr for the San Jacinto fault and the Coachella segment of the San Andreas fault, respectively. However, other paleoseismology data suggest ~12 mm/yr for the central San Jacinto fault (Rockwell et al., 1990, Blisniuk et al., 2010) and ~16 mm/yr for the northern Coachella segment (van der Woerd et al., 2006). Paleoseismology data suggest the slip rate of the southern Coachella segment close to the Salton Sea is 5-8 mm/yr (Shuttle et al., 2002). In our model, we chose 13 mm/yr (Blisniuk et al., 2010) and 16 mm/yr (van der Woerd et al., 2006) for the two faults with large uncertainties (10 mm/yr) to allow possible
variation in the fault slip rates. For the southern Mojave ECSZ, we used the rate of \(\sim 8 \) mm/yr calculated from the sum geologic slip rates of \(6.2 \pm 1.9 \) mm/yr plus 10-30% of fault slip absorbed by distributed shear in zones associated with faults (Oskin et al., 2008).

EXPLANATION OF EARTHQUAKE TIMING PARAMETERS

We adopt the data of recurrence intervals from WGCEP (2008) for the San Andreas, San Jacinto, and Garlock faults. We have assigned a shorter recurrence interval for the Garlock fault compared to the preferred recurrence interval of \(\sim 1200 \) years from WGCEP (2008) because the average repeat time is about 675-690 for the most recent events. For other faults, we assign recurrence intervals based on the information from the southern California fault map of the SCEC data center.

We also take data of time since last earthquake from WGCEP (2008) and other paleoseismology studies. We also assigned shorter time since last earthquake for the San Jacinto fault compared to 200 year repeat time adopted by WGCEP (2008) since some sections of the San Jacinto and Superstition Mountains fault have ruptured at least five times since 1899 (Lundgren et al., 2009).

Even though the surface velocities have been corrected for the coseismic deformation due to the 1992 Landers and 1999 Hector Mine earthquakes, a shear strain rate map derived from the velocity field (Fig. DR3) shows the concentration of strain rates in the southern Mojave ECSZ. The strain rates here derived from the SCEC CMM3 data set are higher than the rates derived from trilateration data prior to 1992 (Sauber et al., 1994), indicating this might be due to post-seismic effects of the Landers and Hector Mine earthquakes. Since we simplified the fault geometry in the ECSZ as one through-going fault, we use different composite time since last earthquakes for this model fault to examine the range of model slip rates corresponding to the timing since last earthquakes. If we assume that the composite time since the last earthquake is 100 years, the model slip rate is \(\sim 7 \) mm/yr. If we assume the composite time since last earthquake is 300-500 years, the model rate is \(\sim 15-20 \) mm/yr. Therefore, our estimates of slip rates across the southern ECSZ are highly sensitive to the assumed timing of past earthquakes.
MODEL RESULTS AND VISCOELASTIC EFFECTS

Table DR1 shows the summary of our model slip rates for the major faults and the comparison of geologic rates and model rates from elastic block models. We can reconcile geologic and geodetic fault slip rates by using our viscoelastic model. In order to estimate the viscosity structure in southern California, we conducted a grid search to find an optimal viscosity for the lower crust/upper mantle with an assumption of a viscosity of 6×10^{18} Pa s for the mantle substrate. Our grid search result shows that the optimal viscosity for the lower crust/upper mantle is 2×10^{20} Pa s (Fig. DR4).

Our viscoelastic model is able to reconcile fault slip rates, especially along the Mojave segment of the San Andreas fault, San Jacinto fault, Garlock fault, and ECSZ. In other words, our viscoelastic model estimates higher slip rates on the Garlock fault and the Mojave segment of the San Andreas fault and lower slip rates across the ECSZ than elastic models. This is because our model predicts fast (slow) deformation rates in the early (late) stage of earthquake cycles due to the postseismic relaxation of viscous flow in the mantle. Figure DR5 shows the predicted surface velocity profile perpendicular to the Mojave segment of the San Andreas fault at different times. The predicted velocities for different times since the last earthquake shows that most of the rapid postseismic relaxation occurs in about 10 years following earthquakes and there is only a few mm/yr of variation in velocities after the first 10 years. There is an indication that earthquakes in the southern ECSZ occur in clusters that repeat about every 5000 years with the recent 1992 Landers and 1999 Hector Mine earthquakes being part of the most recent cluster.
(Rockwell et al., 2000; Dolan et al., 2007). Therefore, we have adopted a composite
recurrence time of 5000 years for the southern ECSZ and assumed that we are currently
observing deformation in the early phase of this cycle \((t_{eq}/T = 0.02) \). The San Jacinto
fault and ECSZ are discontinuous. For the convenience of block model construction and
calculations, we simplify the geometry and rupture length to achieve an overall, first-
order deformation for these two areas. Thus, we assign one recurrence interval and time
since last earthquake for each of them. The true rupture patterns of individual segments
could be more complicated.
Table DR1. Summary of geologic and geodetic fault-slip rates along major fault in southern California.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SAF-Carrizo</td>
<td>33.9 ± 2.9</td>
<td>Sieh and Jahns, 1984</td>
<td>N/A</td>
<td>33.1 ± 9</td>
<td>26.8 ± 8</td>
<td>35.9 ± 0.7</td>
</tr>
<tr>
<td>SAF-Mojave</td>
<td>30 ± 10</td>
<td>Matmon et al., 2005; Weldon et al., 2004</td>
<td>33±2</td>
<td>9.4 ± 13</td>
<td>15.7 ± 12</td>
<td>14.3 ± 1.2</td>
</tr>
<tr>
<td>SAF-San Bernardino</td>
<td>10 ± 5.5</td>
<td>McGill et al., 2008</td>
<td>22±2</td>
<td>−2.3 ± 15</td>
<td>0.9 ± 12</td>
<td>5.1 ± 1.5</td>
</tr>
<tr>
<td>SAF-Coachella</td>
<td>15.9 ± 3.4</td>
<td>van der Woerd et al., 2006</td>
<td>26±2</td>
<td>23.0 ± 8</td>
<td>22.9 ± 8</td>
<td>23.3 ± 0.5</td>
</tr>
<tr>
<td>San Jacinto</td>
<td>10 - 14</td>
<td>Blisniuk et al., 2010</td>
<td>9±2</td>
<td>15.3 ± 11</td>
<td>14.5 ± 9</td>
<td>11.9 ± 1.2</td>
</tr>
<tr>
<td>Elsinore</td>
<td>5.1 ± 2.1</td>
<td>Millman and Rockwell, 1986</td>
<td>6±2</td>
<td>3.7 ± 7</td>
<td>3.7 ± 6</td>
<td>2.7 ± 0.6</td>
</tr>
<tr>
<td>Garlock</td>
<td></td>
<td>N/A</td>
<td>−4.8 ± 14</td>
<td>−3.1 ± 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West</td>
<td>−8 ± 2.7</td>
<td>McGill et al., 2009</td>
<td>−3.2 ± 1.5</td>
<td>−4.9 ± 0.2</td>
<td>−9.5 ± 1.8</td>
<td></td>
</tr>
<tr>
<td>Central</td>
<td>−6.8 ± 1.3</td>
<td>Carter, 1994</td>
<td>−1.8 ± 1.5</td>
<td>−9.3 ± 6</td>
<td>−8.9 ± 1.8</td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>−2.5</td>
<td>McGill, 1998</td>
<td>−1.1 ± 1.9</td>
<td>−1.8 ± 0.2</td>
<td>−6.2 ± 2.3</td>
<td></td>
</tr>
<tr>
<td>ECSZ</td>
<td>7.9 ± 2.6</td>
<td>Oskin et al., 2008</td>
<td>N/A</td>
<td>18.1 ± 19</td>
<td>13.9 ± 17</td>
<td>15 ± 3.6</td>
</tr>
<tr>
<td>Imperial</td>
<td>15 - 20</td>
<td>Thomas and Rockwell, 1996</td>
<td>35±2</td>
<td>39.5 ± 7</td>
<td>38.5 ± 5</td>
<td>36.1 ± 0.7</td>
</tr>
<tr>
<td>Santa Cruz Island</td>
<td>−1 ± 0.5</td>
<td>WGCEP, 2008</td>
<td>N/A</td>
<td>−2.5 ± 11</td>
<td>−2.4 ± 11</td>
<td>N/A</td>
</tr>
<tr>
<td>Death Valley</td>
<td>5 ± 3</td>
<td>WGCEP, 2008</td>
<td>N/A</td>
<td>4.6 ± 8</td>
<td>4.1 ± 8</td>
<td>2.4 ± 1.2</td>
</tr>
<tr>
<td>Panamint Valley</td>
<td>2.5 ± 1</td>
<td>WGCEP, 2008</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>3.1 ± 1.3</td>
</tr>
<tr>
<td>Sierra Nevada - Little Lake</td>
<td>0.7 ± 0.4</td>
<td>WGCEP, 2008</td>
<td>N/A</td>
<td>1.0 ± 10</td>
<td>6.8 ± 8</td>
<td>3.5 ± 0.9</td>
</tr>
<tr>
<td>Hosgri</td>
<td>2.5 ± 1</td>
<td>Hanson and Lettis, 1994</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>3.9 ± 0.6</td>
</tr>
<tr>
<td>Newport - Inglewood</td>
<td>1 ± 0.5</td>
<td>WGCEP, 2008</td>
<td>3 ± 3</td>
<td>N/A</td>
<td>N/A</td>
<td>0.8 ± 1.6</td>
</tr>
<tr>
<td>Palos Verdes</td>
<td>3 ± 1</td>
<td>WGCEP, 2008</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>3.4 ± 1.4</td>
</tr>
<tr>
<td>Santa Cruz - Sabta Catalina Ridge</td>
<td>N/A</td>
<td>4 ± 3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>4.0 ± 1.8</td>
</tr>
<tr>
<td>San Gabriel</td>
<td>1 ± 0.5</td>
<td>WGCEP, 2008</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>3.8 ± 2.2</td>
</tr>
</tbody>
</table>

a: Blisniuk et al. (2010) summarize their results and many previous rates to have this estimate.
b: This rate is the sum of fault-slip rates and distributed shear across six faults
c: The rate is the sum of model rates of ECSZ east and ECSZ west segments
d: The rate is the sum of model rates of Blackwater-Landers, Helendale, Goldstone, and eastern Mojave segments.
e: Expert opinion slip rates from WGCEP (2008)

Figure DR4. Plot the model residuals versus the viscosities of the lower crust. Browns are the GPS residuals, greens are the slip-rate residuals, and blues are the sum of GPS and geologic rate. The minimum residual occurs at the viscosity of 2×10^{20} Pa S.
Figure DR5. Surface velocity transect across the Mojave segment of the San Andreas fault. Black bars are data from SCEC CMM 3. Red, yellow, green, and blue dots represent surface velocities with time since last earthquake of 10, 50, 100, and 145 years, respectively, for the Mojave segment. Cyan dots are block-motion rates.

REFERENCES CITED

