Data Repository items for “Deformation Band Clusters on Mars and Implications for Subsurface Fluid Flow”

Chris H. Okubo*
Lunar and Planetary Laboratory, The University of Arizona, 1541 East University Blvd,
Tucson, AZ 85721
chriso@lpl.arizona.edu, 1-520-626-1458
*Corresponding author
Present address:
U.S. Geological Survey, 2255 N. Gemini Dr., Flagstaff, AZ 86001
cokubo@usgs.gov, 1-928-556-7015

Richard A. Schultz
Geomechanics–Rock Fracture Group, Department of Geological Sciences/172, Mackay
School of Earth Sciences and Engineering, University of Nevada, Reno, NV 89557
schultz@mines.unr.edu, 1-775-784-4318

Marjorie A. Chan
Department of Geology & Geophysics, University of Utah, 135 S 1460 E, Salt Lake City,
Utah 84112
chan@earth.utah.edu, 1-801-581-6551

Goro Komatsu
International Research School of Planetary Sciences, Università d’Annunzio, Viale
Pindaro 42, 65127 Pescara, Italy
goro@irsps.unich.it, 9-085-453-7507

The HiRISE Team
Lunar and Planetary Laboratory, The University of Arizona, 1541 East University Blvd,
Tucson, AZ 85721
FIGURE DR1.
Color anaglyph of north-south-trending structural discontinuities in the area shown in Fig. 5. The structural discontinuities shown in this example all have positive relief, and are interpreted to consist primarily of compactional shear bands. The discontinuities here do not show evidence of bleaching or staining of the host rock. Illumination is from the right.

This anaglyph is composed of the following data:
Red channel is PSP_003418_1865_RED
Green channel is PSP_002574_1865_RED
Blue channel is PSP_002574_1865_BG
FIGURE DR2.
Blue/red anaglyph of structural discontinuities that have a double ridged erosional morphology (Fig. 8). These ridges are interpreted to be the result of fluid flow along the discontinuity and resulting cementation of the host rock on either side of the discontinuity. Illumination is from the right.

This anaglyph is composed of the following data:
- Red channel is PSP_003418_1865_RED
- Green channel is PSP_002574_1865_RED
- Blue channel is PSP_002574_1865_RED
Fig. 7d

- Shadow
- Dark-toned discoloration

N
30 m
FIGURE DR3.

Color anaglyph of diagenetic features along structural discontinuities (fractures or deformation bands) in layered deposits of Meridiani Planum. The ridges here have an irregular, knobby morphology that is distinct from the quasi-linear ridges shown in Figs. 5, 6, and DR1. The knobby morphology is attributed to localized fluid flow and host rock cementation at discrete points along the discontinuities, perhaps at structural stepovers. Topography here also helps to differentiate the dark-toned discoloration of the host rock from topographic shading. These ridges are also lighter in tone (yellow) than the surrounding light-toned (purple) host rock. This change in color is independent of topography and thus is not an artifact of illumination. Illumination is from the right.

This color anaglyph is composed of the following data:
Red channel is PSP_003682_1805_RED
Green channel is PSP_003972_1805_RED
Blue channel is PSP_003972_1805_BG