Appendix.1 U-Pb geochronology

Epoxy grain mounts of hand-selected zircons were ground and polished to expose grain interiors. After ultrasonic cleaning with soapy water, diluted HCl and distilled water, the Au-coated mounts were transferred into a high vacuum chamber (>10^{-8} Torr) and kept overnight. Zircon analysis was performed using the UCLA Cameca ims 1270 ion microprobe with a mass-filtered, ca.15 nÅ ^{16}O^- beam focused to a 25-30 μm diameter spot. The sample chamber was flooded with O_2 at a pressure of ca. 4 x 10^{-3} Pa to enhance Pb^+ yields by roughly a factor of 1.5. Secondary ions were extracted at 10 kV with an energy band pass of 50 eV. Following a ~ 4min pre-sputter period during which secondary beam alignment, mass centering, and charge compensation routines are automatically applied, intensities for ^{94}Zr^{2}O^+ , ^{204}Pb^+ , ^{206}Pb^+ , ^{207}Pb^+ , ^{208}Pb^+ , ^{238}U^+ , ^{232}Th^{16}O^+ and ^{238}U^{16}O^+ were sequentially measured in 10 cycles at a mass resolution of ca. 4800, which is sufficient to resolve most molecular interferences.

The relative sensitivities for Pb and U were determined on reference zircon AS-3 (Paces & Miller, 1993) using a calibration technique similar to Compston et al. (1984). U and Th contents (Table 1) were calculated from ^{238}U^{16}O^+ / ^{94}Zr^{2}O^+ and Th^+/U^+ with relative sensitivities (February 06 2006: 25.5 and 1.09; July 03 2006: 19.5 and 0.91) calibrated on reference zircon 91500 (Wiedenbeck et al., 2004). The ratio of standard analyses to unknowns was ~0.3 was for both sessions, with an external reproducibility of ^{206}Pb/^{238}U ages on AS-3 between 1.6 % (July 03 2006) and 1.8 % (February 06 2006). Unknown ^{206}Pb/^{238}U ages were calculated from common-Pb and disequilibrium corrected U/Pb isotopic ratios. Corrections for common-Pb are based on anthropogenic
compositions (Sañudo-Wilhelmy and Flegal, 1994) and initial disequilibrium ^{230}Th was calculated from measured Th/U$_{zircon}$ and a model Th/U$_{melt}$, using the average Th/U value for Southern Central Andes ignimbrites (~3; Siebel et al., 2001). Because of the likely possibility of reworked material in the collected ashes, a first quick screening with the ion beam on and the mass spectrometer tuned to mass/charge = $^{206}\text{Pb}^+$ was performed on the picked and mounted zircons in order to identify possible old zircons. Following this pre-screening, ca. ten grains per sample selected based on low $^{206}\text{Pb}^+$ count rates were then analyzed. Results including relative probability diagrams are shown in Figure 4. All age uncertainties are reported at 2σ level.

References

Paces, J.B. and Miller, J.D., Jr., 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota; geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagnetic processes associated with the 1.1 Ga Midcontinent Rift System: Journal of Geophysical Research, B, Solid Earth and Planets, 98, 13, 997-914, 013.