TABLE DR1. MAJOR AND TRACE ELEMENT GEOCHEMICAL RESULTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Sample</th>
<th>BD001</th>
<th>BD002</th>
<th>BD003</th>
<th>TH001</th>
<th>TH002</th>
<th>TH003</th>
<th>HS002</th>
<th>LB011</th>
<th>ND004</th>
<th>PP004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boondawari dolerite</td>
<td>BD001</td>
<td>52.02</td>
<td>52.84</td>
<td>52.41</td>
<td>51.45</td>
<td>53.17</td>
<td>52.43</td>
<td>52.24</td>
<td>52.19</td>
<td>52.29</td>
<td>53.45</td>
</tr>
<tr>
<td>Boondawari dolerite</td>
<td>BD002</td>
<td>0.89</td>
<td>0.91</td>
<td>0.92</td>
<td>0.76</td>
<td>0.87</td>
<td>0.99</td>
<td>1.12</td>
<td>1.17</td>
<td>0.13</td>
<td>1.72</td>
</tr>
<tr>
<td>Table Hill Volcanics</td>
<td>TH001</td>
<td>10.72</td>
<td>11.03</td>
<td>10.93</td>
<td>10.06</td>
<td>9.57</td>
<td>12.17</td>
<td>11.73</td>
<td>11.73</td>
<td>11.35</td>
<td>13.29</td>
</tr>
<tr>
<td>Table Hill Volcanics</td>
<td>TH002</td>
<td>9.65</td>
<td>9.93</td>
<td>9.83</td>
<td>9.05</td>
<td>7.62</td>
<td>7.87</td>
<td>9.71</td>
<td>10.55</td>
<td>10.66</td>
<td>11.96</td>
</tr>
<tr>
<td>Table Hill Volcanics</td>
<td>TH003</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.16</td>
<td>0.15</td>
<td>0.13</td>
<td>0.17</td>
<td>0.16</td>
<td>0.17</td>
<td>0.13</td>
</tr>
<tr>
<td>Helen Springs Volcanics</td>
<td>HS002</td>
<td>6.87</td>
<td>7.07</td>
<td>6.96</td>
<td>6.93</td>
<td>6.24</td>
<td>7.28</td>
<td>6.42</td>
<td>5.73</td>
<td>4.55</td>
<td></td>
</tr>
<tr>
<td>Antrim Plateau Volcanics</td>
<td>ND004</td>
<td>2.15</td>
<td>2.25</td>
<td>2.21</td>
<td>2.78</td>
<td>2.22</td>
<td>2.19</td>
<td>2.11</td>
<td>2.41</td>
<td>3.01</td>
<td>2.44</td>
</tr>
<tr>
<td>Antrim Plateau Volcanics</td>
<td>PP004</td>
<td>0.90</td>
<td>0.91</td>
<td>0.89</td>
<td>0.76</td>
<td>0.99</td>
<td>0.99</td>
<td>0.79</td>
<td>0.14</td>
<td>0.12</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Major Elements

- **SiO₂**: 52.02 to 53.45
- **TiO₂**: 0.89 to 1.72
- **Al₂O₃**: 14.67 to 15.55
- **Fe₂O₃**: 10.72 to 13.29
- **MnO**: 0.18 to 0.17
- **MgO**: 6.87 to 7.53
- **CaO**: 10.39 to 11.85
- **Na₂O**: 2.15 to 3.01
- **K₂O**: 0.90 to 1.50
- **P₂O₅**: 0.11 to 0.15
- **LOI**: 1.34 to 2.61

Trace Elements

- **Ti**: 5312 to 10305
- **P**: 7429 to 19159
- **K**: 489 to 672
- **Sc**: 38.9 to 35.5
- **V**: 97.3 to 184.3
- **Cr**: 85 to 29.2
- **Ni**: 75 to 52.4
- **Co**: 42.21 to 428.6
- **Cu**: 97.3 to 10102
- **Zn**: 89.3 to 39.8
- **Ga**: 32.6 to 124.6
- **Rb**: 188.6 to 140.2
- **Sr**: 22.93 to 154.6
- **Y**: 96.9 to 124.8
- **Zr**: 32.6 to 124.6
- **Nb**: 188.6 to 103.2
- **Sn**: 85 to 29.2
- **Cs**: 75 to 52.4
- **Ba**: 236.5 to 29.2
- **La**: 5312 to 124.6
- **Ce**: 53.9 to 140.2
- **Pr**: 32.6 to 124.6
- **Nd**: 188.6 to 124.6
- **Sm**: 22.93 to 124.6
- **Eu**: 96.9 to 124.6
- **Gd**: 22.93 to 124.6
- **Tb**: 96.9 to 124.6
- **Dy**: 22.93 to 124.6
- **Ho**: 22.93 to 124.6
- **Er**: 22.93 to 124.6
- **Tm**: 22.93 to 124.6
- **Yb**: 22.93 to 124.6
- **Lu**: 22.93 to 124.6
- **Hf**: 22.93 to 124.6
- **Ta**: 22.93 to 124.6
- **Pb**: 22.93 to 124.6
- **Th**: 22.93 to 124.6
- **U**: 22.93 to 124.6

Note

- Major elements were determined by XRF using facilities in the Department of Geology, The Australian National University.
- Trace elements were analysed by laser ablation-ICPMS on lithium borate fusion beads at the Research School of Earth Sciences, The Australian National University.

Mg#.15 = molar [100 * Mg/(Mg+Fe²⁺)] for Fe₂O₃/FeO = 0.15.

#N.D. = not determined.
Errors are one sigma uncertainties and exclude uncertainties in the J-value.

TABLE DR2. \(^{39}\text{Ar}/^{37}\text{Ar}\) ANALYTICAL RESULTS

| Temp (˚C) | Cum. \(^{36}\text{Ar}\) \((\text{mole}^\circ)\) | \(^{36}\text{Ar}\) \((\text{mole}^\circ)\) | \(^{39}\text{Ar}\) \((\text{mole}^\circ)\) | \(^{40}\text{Ar}\) \((\text{mole}^\circ)\) | \(^{39}\text{Ar}/^{37}\text{Ar}\) | \(^{40}\text{Ar}/^{37}\text{Ar}\) | Ca/K | \(^{40}\text{Ar}/^{36}\text{Ar}\) | Age (Ma) | **\(Z_{100}^{\text{calc}}\)**
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>65.0</td>
<td>2.717E-17</td>
<td>9.191E-15</td>
<td>1.208E-14</td>
<td>1.023E-14</td>
<td>39.1</td>
<td>30.6</td>
<td>33.56</td>
<td>497.5</td>
<td>1.75</td>
</tr>
<tr>
<td>850</td>
<td>67.1</td>
<td>1.287E-17</td>
<td>4.037E-15</td>
<td>8.986E-15</td>
<td>6.944E-15</td>
<td>65.5</td>
<td>41.1</td>
<td>34.56</td>
<td>510.3</td>
<td>8.4</td>
</tr>
<tr>
<td>900</td>
<td>80.0</td>
<td>5.782E-17</td>
<td>1.925E-15</td>
<td>3.906E-15</td>
<td>3.050E-15</td>
<td>85.4</td>
<td>46.9</td>
<td>34.18</td>
<td>504.4</td>
<td>2.3</td>
</tr>
<tr>
<td>950</td>
<td>90.8</td>
<td>2.135E-17</td>
<td>6.781E-15</td>
<td>1.377E-14</td>
<td>1.101E-14</td>
<td>95.1</td>
<td>39.6</td>
<td>35.73</td>
<td>525.3</td>
<td>1.7</td>
</tr>
<tr>
<td>1000</td>
<td>93.6</td>
<td>2.389E-17</td>
<td>7.385E-15</td>
<td>1.476E-14</td>
<td>1.203E-14</td>
<td>94.0</td>
<td>40.7</td>
<td>35.55</td>
<td>516.9</td>
<td>1.9</td>
</tr>
<tr>
<td>1050</td>
<td>97.2</td>
<td>2.109E-17</td>
<td>6.421E-15</td>
<td>1.287E-14</td>
<td>1.093E-14</td>
<td>95.1</td>
<td>39.6</td>
<td>35.73</td>
<td>525.3</td>
<td>1.7</td>
</tr>
<tr>
<td>1100</td>
<td>99.7</td>
<td>3.642E-17</td>
<td>1.122E-15</td>
<td>2.244E-14</td>
<td>1.915E-14</td>
<td>95.5</td>
<td>40.0</td>
<td>35.61</td>
<td>518.7</td>
<td>2.2</td>
</tr>
<tr>
<td>1150</td>
<td>100.0</td>
<td>1.974E-17</td>
<td>6.171E-15</td>
<td>1.246E-14</td>
<td>1.050E-14</td>
<td>94.9</td>
<td>39.2</td>
<td>35.41</td>
<td>515.1</td>
<td>2.2</td>
</tr>
<tr>
<td>1200</td>
<td>100.0</td>
<td>1.874E-17</td>
<td>5.628E-15</td>
<td>1.126E-14</td>
<td>94.57E-14</td>
<td>94.0</td>
<td>39.6</td>
<td>35.73</td>
<td>525.3</td>
<td>1.7</td>
</tr>
<tr>
<td>1250</td>
<td>100.0</td>
<td>1.671E-17</td>
<td>5.086E-15</td>
<td>1.017E-14</td>
<td>87.50E-14</td>
<td>94.7</td>
<td>39.2</td>
<td>35.47</td>
<td>514.0</td>
<td>2.1</td>
</tr>
<tr>
<td>1300</td>
<td>100.0</td>
<td>1.460E-17</td>
<td>4.545E-15</td>
<td>91.24E-14</td>
<td>79.59E-14</td>
<td>95.6</td>
<td>39.2</td>
<td>35.47</td>
<td>514.0</td>
<td>2.7</td>
</tr>
<tr>
<td>1350</td>
<td>100.0</td>
<td>1.246E-17</td>
<td>3.990E-15</td>
<td>85.00E-14</td>
<td>64.11E-14</td>
<td>95.6</td>
<td>39.3</td>
<td>35.52</td>
<td>520.1</td>
<td>2.5</td>
</tr>
<tr>
<td>1400</td>
<td>100.0</td>
<td>1.027E-17</td>
<td>3.426E-15</td>
<td>79.20E-14</td>
<td>53.93E-14</td>
<td>95.6</td>
<td>39.3</td>
<td>35.52</td>
<td>520.1</td>
<td>2.5</td>
</tr>
<tr>
<td>1450</td>
<td>100.0</td>
<td>7.981E-18</td>
<td>2.785E-15</td>
<td>73.60E-14</td>
<td>42.58E-14</td>
<td>95.1</td>
<td>39.1</td>
<td>35.48</td>
<td>516.5</td>
<td>2.5</td>
</tr>
<tr>
<td>1500</td>
<td>100.0</td>
<td>5.580E-18</td>
<td>2.127E-15</td>
<td>68.20E-14</td>
<td>35.15E-14</td>
<td>94.9</td>
<td>39.0</td>
<td>35.45</td>
<td>514.9</td>
<td>2.5</td>
</tr>
<tr>
<td>1550</td>
<td>100.0</td>
<td>3.318E-18</td>
<td>1.169E-15</td>
<td>63.06E-14</td>
<td>28.81E-14</td>
<td>94.7</td>
<td>38.9</td>
<td>35.42</td>
<td>513.3</td>
<td>2.5</td>
</tr>
<tr>
<td>1600</td>
<td>100.0</td>
<td>1.685E-18</td>
<td>6.058E-16</td>
<td>58.48E-14</td>
<td>14.31E-14</td>
<td>94.1</td>
<td>38.7</td>
<td>35.38</td>
<td>511.5</td>
<td>2.5</td>
</tr>
<tr>
<td>1650</td>
<td>100.0</td>
<td>8.413E-19</td>
<td>2.972E-16</td>
<td>54.44E-14</td>
<td>6.64E-14</td>
<td>93.3</td>
<td>38.5</td>
<td>35.34</td>
<td>509.7</td>
<td>2.5</td>
</tr>
<tr>
<td>1700</td>
<td>100.0</td>
<td>4.206E-19</td>
<td>1.489E-16</td>
<td>50.88E-14</td>
<td>3.70E-14</td>
<td>92.4</td>
<td>38.3</td>
<td>35.30</td>
<td>507.9</td>
<td>2.5</td>
</tr>
<tr>
<td>1750</td>
<td>100.0</td>
<td>2.103E-19</td>
<td>7.440E-17</td>
<td>47.61E-14</td>
<td>1.84E-14</td>
<td>91.4</td>
<td>38.2</td>
<td>35.26</td>
<td>506.1</td>
<td>2.5</td>
</tr>
<tr>
<td>1800</td>
<td>100.0</td>
<td>1.051E-19</td>
<td>3.720E-17</td>
<td>44.71E-14</td>
<td>7.39E-14</td>
<td>90.4</td>
<td>38.1</td>
<td>35.22</td>
<td>504.4</td>
<td>2.5</td>
</tr>
<tr>
<td>1850</td>
<td>100.0</td>
<td>5.255E-20</td>
<td>1.862E-17</td>
<td>42.21E-14</td>
<td>3.58E-14</td>
<td>89.3</td>
<td>38.0</td>
<td>35.18</td>
<td>502.7</td>
<td>2.5</td>
</tr>
<tr>
<td>1900</td>
<td>100.0</td>
<td>2.627E-20</td>
<td>9.313E-18</td>
<td>39.97E-14</td>
<td>1.79E-14</td>
<td>88.2</td>
<td>37.9</td>
<td>35.14</td>
<td>500.9</td>
<td>2.5</td>
</tr>
<tr>
<td>1950</td>
<td>100.0</td>
<td>1.314E-20</td>
<td>4.641E-18</td>
<td>37.91E-14</td>
<td>8.95E-15</td>
<td>87.0</td>
<td>37.8</td>
<td>35.10</td>
<td>499.2</td>
<td>2.5</td>
</tr>
<tr>
<td>2000</td>
<td>100.0</td>
<td>6.571E-21</td>
<td>2.287E-18</td>
<td>35.96E-14</td>
<td>4.47E-15</td>
<td>85.7</td>
<td>37.7</td>
<td>35.06</td>
<td>497.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Note: Isotopic intercalibration corrections \(\Delta^{39}\text{Ar}/^{37}\text{Ar} = 3.45 \times 10^{-7}\) (at 1400 ˚C) and \(\Delta^{40}\text{Ar}/^{37}\text{Ar} = 7.86 \times 10^{-8}\) (at 1400 ˚C) (Spiegel et al. 1996).

\(^{(39)}\text{Ar}/^{37}\text{Ar} = 2.03 \pm 0.03 (2\sigma)\).