Conodonts were identified by Charles Sandberg unless otherwise noted. Graptolites were identified by William Berry unless otherwise noted. Ordovician graptolite zones (zones 1-15) are from Berry (1960). * indicates localities shown on Figures 2, 3, 4, or 5.

Area 1 - North of Log Cabin Mine pendant

Unit: Mount Baldwin Marble
All fossils are conodonts except where noted. Conodonts were identified by Scott Ritter.

Sample LV - 1. On south side of gully (38°04'24"N; 119°10'55"W)
 Idiognathodus magnificus gp.?
 Neognathodus medadulimitus
 Age: late Atokan-early Desmoinesian

Samples LV - 2,3,5,6,7,9. Samples between LV-1 and LV-10.
 Idiognathodus sp.
 Age: Pennsylvanian, probably late Atokan-early Desmoinesian

 Ellisonia sp.
 Age: Pennsylvanian, probably late Atokan-early Desmoinesian

Sample LV - 10. On south side of gully (38°04'24"N; 119°10'44"W).
 Adetognathodus laetus
 Diplognathodus cf. *D. coloradoensis*
 Fusulinella sp. (fusulinid)
 Age: conodonts suggest late Atokan-early Desmoinesian; fusulinids suggest middle Atokan

Area 2 - Log Cabin Mine pendant

Unit: Convict Lake Formation
All fossils are graptolites.

* Sample E - 188 (37·58°20′N; 119·09°50′W) Identification by Stan Finney.
 Climacograptus sp. aff. C. brevis
 Leptograptus sp.
 Corynoides sp.
 Dicranograptus sp.
 Age: Middle Ordovician

Sample LV - 11 (37·57°12′N; 119·07°03′W)
 biserial graptolite?
 Age: Ordovician?

* Stewart, 1985 sample (37·56°38′N; 119·07°01′W)
 graptolite
 Age: Middle-Late Ordovician?

Area 3 - Mount Morrison pendant

Unit: Mount Aggie Formation
 All fossils are conodonts.

*Sample 13732 of Ketner, Buzztail Spring member (37·35°44′N; 118·51°33′W). Identification by John Repetski via Keith Ketner.
 Age: Cambrian-Ordovician boundary

*Sample 13762 of Ketner, Salty Peterson member (37·35°08′N; 118·51°21′W)
 Identification by John Repetski via Keith Ketner.
 Age: Cambrian-Ordovician boundary

Unit: Convict Lake Formation
 All fossils are graptolites.

Sample Locality F of Rinehart and Ross (1964) - new collection (37·34°51′N; 118·51°40′W)
 Glossograptus sp.
 Orthograptus cf. O. calcaratus
 Climacograptus phyllophorus
 Climacograptus sp. 2
 Dicranograptus ramosus
 Pseudoclimacograptus aff. P. scharenbergi
 Cryptograptus sp.
Zone: 11-12

Sample Locality B of Rinehart and Ross (1964) - new collection (37°33′09″N; 118°47′27″W). Identification by Stan Finney.
Taxa as reported by Ross and Berry (1963).
Zone: 12

Sample 102 (37°35′32″N; 118°52′39″W)
Possible graptolites
Age: possibly Middle-Late Ordovician

Sample 98
Possible dichograptid graptolite (37°35′47″N; 118°51′56″W)
Age: possibly Ordovician

*Sample E-363 (float at 37°31′52″N; 118°47′34″W) Identification by Stan Finney.
Glossograptus sp.
Age: Middle Ordovician

Orthograptus calcaratus
Dicellograptus sp. or Leptograptus sp.
Age: Middle to Late Ordovician

Climacograptus hastatus
Age: Late Ordovician

Unit: Mount Morrison Sandstone

*Sample 120 from a clast in a conglomerate near base of formation (37°33′29″N; 118°48′29″W)
Corals Identification by William Oliver.
Alveolites sp.
favositid coral
coenitid coral
Age: Silurian to Devonian

Conodonts
Latericriodus sp.
Age: early Early Devonian

3
Unit: McGee Mountain Member of Squares Tunnel Formation

All fossils are conodonts.

Sample MC1 (37°34.01′N; 118°49.39′W), near base of member.
"Palmatolepis" sp.
"Palmatolepis superlobata"
"Polygnathus nodocostata"
Age: probably early-middle crepida zone, early Famennian

Sample 127 (37°34.01′N; 118°49.39′W), middle of member
"Palmatolepis perlobata"
Pa. subperlobata
Pa. glabra prima
Pa. minuta minuta
Age: late crepida zone, early Famennian

Sample E-144 Near top of Mt. Morrison (37°33.37′N; 118°51.30′W)
Age: Famennian

Unit: Mount Morrison Sandstone (probably float)

Sample 13756 of Ketner (37°34.44′N; 118°52.25′W) Identification by Anita Harris.

Conodonts
"Icriodus" spp.
"Polygnathus linguiformis" Hinde?
"Polygnathus" sp. - Middle-Late Devonian morphotype
Age: Middle Devonian to early Frasnian

Unit: Bright Dot Formation

*Sample BD-43 (37°33.35′N; 118°52.21′W; in Willahan, 1991)

Conodonts
"Polygnathus communis communis"
"Bispashodus utahensis"
"Hindeodus penescitulus"
Age: Mississippian

"Pseudopolygnathus oxypageus"
Age: early Osagean (Upper typicus Zone)
Siphonodella sp. (reworked)
Gnathodus punctatus (reworked)
Age: late Kinderhookian (isosticha-Upper crenulata Zone)

Palmatolepis marginifera (reworked)
Age: early Famennian (Early marginifera Zone)

Unit: Mount Baldwin Marble
All fossils are conodonts.

Sample MB-26a near base of unit (37°34′02″N; 118°52′50″W; in Willahan, 1991)
Adetognathus aff. A. lautus
Declinognathus aff. D. noduliferous
Age: Morrowan

Sample MB-94 near base of unit (37°34′54″N; 118°54′01″W; in Willahan, 1991)
Adentognathus aff. A. lautus
Rhachistognathus aff. R. muricatus?
Idiognathoides aff. I. noduliferous
Idiognathoides aff. I. sulcatus sulcatus?
Idiognathoides aff. I. sinuatus
Age: Morrowan

Sample MB-52-C (37°34′06″N; 118°52′57″W) Identification by Scott Ritter.
Idiognathodus sp.
Neognathodus bothrops
Neognathodus medexultimus
Gondolella sp.
Age: late Atokan-early Desmoinesian

Sample MB-222 at top of unit (37°34′33″N; 118°53′43″W) Identification by Scott Ritter.
Streptognathodus longissimus
Streptognathodus fusus
Streptognathodus spp.
Mesogondolella sp.
Age: late Asselian
Unit: Bloody Mountain Formation

Sample nn-100, on north-northeast flank of Bloody Mountain
Conodonts
Age: Permian

Area 4 - Bishop Creek pendant

Unit: Convict Lake Formation
All fossils are graptolites.

Sample #9 (37°14′14″N; 118°30′45″W)
Climacograptus minimus?
Orthograptus quadrimucronatus group?
Zone: possibly 13-14

Sample #8 (37°14′15″N; 118°30′39″W)
Climacograptus sp.
Orthograptus sp.
Cyrtograptus tricornis
Zone: probably 12-14

* Sample #5 (37°14′12″N; 118°30′36″W)
Orthograptus truncatus?
Orthograptus calcarius
Zone: probably 13-14

Sample #4 (37°14′05″N; 118°30′39″W)
Climacograptus spiniferus
Dicranograptus nelsonsoni
Zone: 13

* Sample #3 (37°14′05″N; 118°30′38″W)
Climacograptus spiniferus
Dicranograptus nelsonsoni?
Climacograptus sp.
Zone: 13

Sample #2 (37°14′05″N; 118°30′38″W)
Climacograptus bicorins
Climacograptus sp.1
Climacograptus sp. 2
Dicellograptus sextans
Zone: 12

* Sample #1 (37°13´57˝N; 118°30´35˝W)
 Didymograptus? sp.
dichograptid
tetragraptid?
Zone: Lower Ordovician (probably zone 3-7)

Sample D-10-CC (37°13´12˝N; 118°33´14˝W)
 Climacograptus bicornis
 Climacograptus sp.
 Glyptograptus sp.
 Orthograptus calcaratus
dicellograptid?
Zone: 12

Sample D-10-CC float (topographically below D-10-CC)
 orthograptid (large)
 biserial graptolite (wide)
 climacograptid
Age: Late Ordovician

* Sample 44c (37°14´56˝N; 118°30´14˝W)
 Dicellograptus sp.
 Climacograptus tubuliferus?
 Orthograptus truncatus truncatus?
Zone: probably 14

* Sample 3c (37°14´56˝N; 118°30´07˝W)
 Orthograptus quadrimucronatus
 Climacograptus dorotheus?
Zone: 14?

* Sample 1c (37°11´31˝N; 118°32´24˝W)
 Orthograptus quadrimucronatus?
Zone: 14?

* Sample 56c (37°13´12˝N; 118°32´08˝W)
Climacograptus calcarius?
Orthograptus sp.
Age: late Middle Ordovician or somewhat younger

Sample 5c (37°14'52" N; 118°29'58" W)
climacograptid
glyptograptid?
Age: Middle Ordovician

Sample 4c (37°14'54" N; 118°30'00" W)
Orthograptus sp.
climacograptid
Age: probably Late Ordovician

* Sample 8c (37°13'12" N; 118°33'14" W)
Climacograptus hvalross
Zone: 14-15

Sample 6c (37°14'51" N; 118°29'55" W)
Climacograptus sp.
Orthograptus calcarius gp.?
Zone: 13-14?

* Sample 54c (37°11'48" N; 118°32'09" W)
Dicellograptus sp.
Orthograptus truncatus
Orthograptus calcarius
Glyptograptus sp.
Climacograptus spiniferus
Zone: 13

Area 5 - Arcularius Ranch

Unit: Convict Lake Formation
Graptolites

Sample nn-102 (37°45'50" N; 118°52'50" W)
Tetragraptus fruticosus (3 and 4 branched forms)
T. cf. T. hartii
T. cf. T. amii
T. pendens?
T. quadribrachiatus?
Phyllograptus iliciformis
Didymograptus (extensiform type)
Zone: 5

Area 6 - Tinemaha Reservoir
All fossils conodonts unless otherwise indicated.
Unit: Mount Morrison Sandstone

Sample T2-94-1 from upper limestone unit (37°05′24″N; 118°12′12″W)
Ancyrolepis beckmanni
Icriodus expansus narrow morphotype
Polygnathus ansatus
Polygnathus linguiformis linguiformis gamma morphotype
Polygnathus ova tinodosus?
Polygnathus pennatus?
Polygnathus pseudofoliatus
Polygnathus timorensis
Polygnathus xylus
simple cones
Age: middle varcus (Givetian)
Age: late Eifelian

Sample T2-94-3 (same locality as Sample T2-94-1)
Icriodus brevis
Icriodus expansus narrow morphotype
Polygnathus ansatus
Polygnathus linguiformis linguiformis delta
Polygnathus linguiformis linguiformis gamma
Polygnathus pseudofoliatus
Polygnathus serotinus (reworked)
Polygnathus timorensis
Polygnathus varcus
Tortodus kockelianus (reworked)
Age: middle varcus (Givetian)

Sample C-29 (same locality as Sample T2-94-1 except from the lower conglomerate)
Corals Identification by William Oliver.
chaetetid
Thamnopora?
Cladopora?
Coenites?
Age: Devonian

Unit: Kearsarge Formation

Sample TR-1 (in Stevens and others, 1996) (37°04′34″N; 118°12′05″W)
Bispathodus sp.
Gnathodus sp. aff. G. delicatus
Gnathodus pseudosemglaber
Gnathodus texanus (late form)
Gnathodus sp.
Polygnathus communis communis
Polygnathus longiposticus
Taphrognathus varians
Palmatolepis sp. (reworked Famennian)
Pseudopolygnathus cf. P. micropunctatus (reworked Famennian)
Siphonodella isosticha (reworked Kinderhookian)
Siphonodella isosticha-obsoleta (reworked Kinderhookian)
Zone: homopunctatus-Upper texanus
Age: early Meramecian

Area 7 - Poverty Hills

Unit: Keeler Canyon Formation?

Sample PH-1 (37°02′67″N; 118°15′85″W)
Conodonts
Idiognathodus magnificus
Streptognathodus elegantulus
Streptognathodus elongatus elegantulus
Palmatolepis perlobata posteria (reworked Famennian specimen)
Age: Virgilian

Area 8 - Mazourka Canyon

Unit: Vaughn Gulch Limestone (near top of section)

Sample VG1 - 94 (36°49′11″N; 118°04′32″W)
Conodonts
Age: early Eifelian

Unit: Squares Tunnel Formation

Sample V-2 (36°49′10″N; 118°04′31″W), from a clast at base of formation.
Conodonts
Age: Emsian

Sample tp (36°49′10″N; 118°04′31″W), from calcareous sandstone lens below chert unit.
Conodonts
Age: Givetian
Measured sections
Locations shown on Figures 2, 3, 4, 5

Section 1 in Log Cabin Mine pendant. Aspen Meadow Formation, Mount Morrison Sandstone, and Squares Tunnel Formation. Measured by C.H. Stevens and Tina Pelley, June 1994. For location see Figure 5.

Top of section

Bright Dot Formation (Mississippian).
Quartzite, micaceous, tan-colored, interbedded with dark-gray argillite

Paraconformable contact
Squares Tunnel Formation (Upper Devonian)
Upper member
1. Chert and argillite, black, medium bedded; some light-gray phosphatic lenses near base..................42

Total thickness of upper member..................42

Paraconformable contact
McGee Mountain Member
15. Calc-hornfels, light gray..........................23.5
14. Limestone, medium to very dark gray, fine grained........ 6
13. Sandstone, light gray, coarse grained, calcareous,
 with "floating" argillite clasts up to 2 cm long;
 1 m of calc-silicate rock 13 m above base.......................19.5
12. Limestone, dark gray, mostly fine grained, thin bedded;
 some thin calcareous sandstone beds..................18
11. Sandstone, light gray, coarse grained, calcareous........ 6
10. Limestone, dark gray, mostly fine grained, thin bedded;
 some 8-cm-thick calcareous sandstone beds...................4.5
 9. Sandstone, light gray, coarse grained, calcareous........ 6
 8. Largely covered; some medium- to dark-gray, fine-grained limestone..........................10.5
7. Argillite, siliceous, black .. 1
6. Covered .. 10.5
5. Sandstone, light gray, coarse grained, massive 2
4. Largely covered; some light- to medium-gray calc-silicate rock in float .. 7.5
3. Sandstone, light gray, fine grained, calcareous, mostly finely laminated ... 7.5
2. Calc-silicate rock, light to medium gray, interbedded with limestone, medium gray, medium grained 16.5
1. Mostly covered; some limestone, light gray, medium grained; and light-gray calc-silicate rocks 24

Total thickness of McGee Mountain Member 163

Paraconformable contact
Lower member
3. Chert and argillite, black, massive to thinly bedded 15
2. Sandstone, light gray, coarse grained, calcareous 6
1. Argillite, dark gray, very siliceous near top, with light-gray phosphatic lenses in upper part 56

Total thickness of lower member 77

Total thickness of Squares Tunnel Formation 282

Paraconformable contact
Mount Morrison Sandstone (Middle? Devonian)
11. Sandstone, light gray, coarse grained, calcareous 1.5
10. Limestone, medium gray, micritic, medium gray, mostly thin bedded ... 6
9. Sandstone, light gray, coarse grained, calcareous, apparently massive with "floating" black argillite clasts up to 12 cm long ... 22.5
8. Argillite, dark bluish gray in beds 2-6 cm thick, calcareous on fresh surfaces .. 7.5
7. Sandstone, light gray, coarse grained, calcareous, mostly massive; upper 6 m with no apparent bedding 13.5
6. Limestone, medium gray, micritic; includes several coarse-grained calcareous sandstones 2 cm to 1 m thick; discontinuous chert blebs up to 4 cm thick 39
5. Sandstone, light gray, coarse grained, calcareous,
massive... 2
4. Sandstone and quartzite, light gray, medium and fine
 grained, calcareous, with thin laminae and 3-cm-high
 cross-stratification.. 15
3. Sandstone, light gray, coarse grained, calcareous, massive.. 2
2. Calc-silicate rock, light gray, thin bedded.................... 9
1. Sandstone, light gray, coarse grained, calcareous.......... 9

Total thickness of Mount Morrison Sandstone..............127

Paraconformable contact
Aspen Meadow Formation (Silurian-Lower? Devonian)
8. Chert, light gray, interbedded with calc-silicate rock, tan
 to white, with rare medium-gray limestone in beds
 0.5 to 3 cm thick... 16
7. Quartzite, light gray, medium grained, calcareous,
 massive... 1.5
6. Chert and calc-silicate rock, mostly light gray, in beds
 2-4 cm thick.. 15
5. Covered.. 15
4. Siltstone, medium brown, thinly laminated, muscovite
 on some surfaces... 18
3. Chert, banded, light and dark gray.............................. 3
2. Covered, probably similar to unit 1.............................. 9
1. Chert, light and dark gray bands 1 to 4 cm thick,
 internally laminated, with some very fine grained
 quartzite with cross-stratification up to 4 cm high.......37.5

Total thickness of Aspen Meadow Formation............115

Paraconformable contact
Convict Lake Formation (Ordovician)
 Argillite, black, siliceous, with light-gray phosphatic lenses

Section 2a in Gull Lake pendant. Mount Morrison Sandstone and Squares Tunnel
Formation (incomplete). Measured by C.H. Stevens and Tina Pelley, 1996. For location
see Figure 4.

Covered
Squares Tunnel Formation (Upper Devonian)
Lower member (incomplete)

8. Chert, light gray, banded; 2m of dark-gray banded chert at top..30
7. Chert, light gray, with light-gray phosphatic lenses up to 2 cm thick..............................3
6. Chert, light brownish gray to black, beds mostly 5 to 7 cm thick....................................15
5. Covered..4
4. Chert, light gray with dark-gray chert in middle...36
3. Chert, dark gray to black, with light-gray phosphatic lenses up to 7 cm thick................16.5
2. Chert, medium gray, with phosphatic lenses to 2 cm thick..12
1. Chert, medium gray, with contorted bluish-white phosphatic blebs and stringers up to 3 cm thick........15

Incomplete thickness of lower member.........................131.5

Conformable contact
Mount Morrison Sandstone (Middle Devonian)

19. Calc-silicate rock or chert, light gray, massive..............12
18. Sandstone, light gray, fine grained, siliceous, massive......2
17. Covered..11
16. Sandstone, light gray, medium grained, calcareous, massive..13.5
15. Calc-silicate rock, light gray, thinly bedded..................3
14. Covered with a 1-m-thick diorite sill...............................24
13. Calc-silicate rock, light gray, laminated to beds 8 cm thick..20
12. Calc-silicate rock, light to medium gray, in beds 5 to 7 cm thick..................................27
11. Sandstone, light gray, fine to medium grained, beds 0.5 to 7 cm thick..............................4.5
10. Calc-silicate rock, light gray, fine grained, beds 1 to 7 cm thick....................................3
9. Covered..7
8. Calc-silicate rock, light gray, mostly finely laminated with some 2-cm-high cross beds.............17.5
7. Calc-silicate rock, light gray, fine grained.........................5
6. Sandstone, light gray, medium grained, calcareous...........4
5. Calc-silicate rock, light gray, fine grained.........................6
Transfer across alluvium - relation to the above section uncertain, but probably a small amount of section is missing.

4. Sandstone, light gray, calcareous; and calc-silicate rock in beds ranging from 2 to 6 cm thick 16
3. Diorite sill ... 4.5
2. Covered ... 3
1. Sandstone, light tan to gray, medium grained, calcareous, massive .. 6

Total thickness of Mount Morrison Sandstone 189?

Contact conformable

Aspen Meadow Formation (Silurian-Lower? Devonian)
Calc-silicate rock with bands of wollastonite, yellowish tan, banded, beds about 3 cm thick

Section 2b in Gull Lake pendant. McGee Mountain Member of Squares Tunnel Formation. Measured by C.H. Stevens and Tina Pelley, June 1994. For location see Figure 4.

Squares Tunnel Formation (Upper Devonian)
Upper member
Argillite, dark gray to black

Conformable contact
McGee Mountain Member

14. Sandstone, coarse grained, calcareous, massive 5
13. Limestone, light gray, very fine grained 16.5
12. Sandstone, coarse grained, calcareous 4.5
11. Covered ... 3.5
10. Sandstone, coarse grained, calcareous 1.5
9. Limestone, light gray, very fine grained 6
8. Sandstone, coarse grained, calcareous 7.5
7. Limestone, light gray, very fine grained 4.5
6. Argillite, black ... 10
5. Covered ... 37.5
4. Sandstone, coarse grained, calcareous, massive 13
3. Covered ... 12
2. Chert, black, with some light-gray phosphatic eyelets 4
1. Limestone, light gray; and sandstone, calcareous,
massive..29

Total thickness of McGee Mountain Member..........164.5

Conformable contact
Lower Member of Squares Tunnel Formation
Chert, mostly black with light-gray phosphatic lenses throughout

Section 3a in Mount Morrison pendant. Mount Aggie Formation (incomplete type section) with Salty Peterson and Coyote Ridge members(complete), Convict Lake Formation (type section), Aspen Meadow Formation, Mount Morrison Sandstone (type section), and Squares Tunnel Formation (incomplete). Measured by C.H. Stevens and Tina Pelley, June, 1994 and August, 1995. For location see Figure 3.

Fault
Squares Tunnel Formation (Upper Devonian) (incomplete)
McGee Mountain Member (incomplete)
2. Argillite, black, with light-gray phosphatic blebs and lenses..18
1. Sandstone, white, fine grained, calcareous60

Incomplete thickness of McGee Mountain Member........78

Conformable contact
Lower member
1. Argillite, dark gray, abundant light-gray phosphatic blebs..14

Total thickness of lower member..................14

Incomplete thickness of Square Tunnel Formation........92

Conformable contact
Mount Morrison Sandstone (Middle Devonian)
11. Limestone, light to medium gray, thin bedded; and thin beds of sandstone, light gray, medium grained. Small-scale cross beds suggest westward transport.........21
10. Sandstone, light gray, coarse grained, calcareous.........1.5
9. Limestone, light gray, thin bedded; and sandstone, light gray, fine grained, calcareous, with rare cross bedding ... 6
8. Sandstone, light gray, coarse grained, calcareous............. 2
7. Granitic dike... 1.5
6. Sandstone, light gray, coarse grained, massive, calcareous.. 1
5. Limestone, fine grained, thin bedded, with thin beds of coarse-grained, calcareous sandstone........... 5
4. Sandstone, light gray, coarse grained, calcareous............. 78
3. Sandstone, light gray, medium to coarse grained, calcareous, massive... 43
2. Argillite, brown... 1.5
1. Sandstone, light gray, coarse grained, calcareous............. 13

Total thickness of Mount Morrison Sandstone..............173.5

Paraconformable contact

Aspen Meadow Formation (Silurian-Lower Devonian?)

1. Chert and calc-silicate rock, light to medium gray, weathering to yellow or orange colors, in very regular beds commonly 5 to 8 cm thick... 79

Total thickness of Aspen Meadow Formation..............79

Conformable contact

Convict Lake Formation (Ordovician)

23. Sandstone and siltstone, dark reddish brown, very fine grained..15
22. Argillite, very dark gray, weathers rusty brown.......... 10
21. Limestone, light gray, very fine grained.................... 4.5
20. Argillite, very dark gray... 69
19. Quartzite, gray, light orange-weathering.................... 1.5
18. Argillite, black, orange-weathering............................ 7.5
17. Quartzite, light to medium gray, medium grained........ 9
16. Argillite, black, orange-weathering, thinly banded at top..12
15. Quartzite, light gray, medium grained, massive.........10.5
14. Hornfels, very dark gray, weathers rusty brown........ 3
13. Quartzite, light gray.. 7.5
12. Hornfels, very dark gray, weathers rusty brown, some banding.. 30
11. Quartzite, light gray... 9
10. Argillite, black, weathers light rusty-brown...................... 7.5
 9. Covered.. 15
 8. Quartzite, light gray to white.. 6
 7. Covered.. 9
 6. Argillite, black, weathers light rusty-brown, mostly covered... 27
 5. Argillite, light rusty-tan-weathering, siliceous, well banded... 16.5
 4. Argillite, black, rusty-brown-weathering, somewhat banded.. 22.5
 3. Quartzite, medium gray, medium grained......................... 6
 2. Argillite, black, weathers rusty brown............................... 26.5
 1. Quartzite, medium gray, weathers light tan....................... 12

Total thickness of Convict Lake Formation.................. 336.5

Conformable contact
Mount Aggie Formation (Cambrian-Lower Ordovician?)
 Coyote Ridge member
 23. Chert, black and white, bands 0.5 to 1 cm thick............... 4.5
 22. Argillite, black, weathers dark rusty-brown.................... 6
 21. Covered... 7
 20. Chert, black and white bands 0.5 to 1 cm thick............... 4.5
 19. Argillite, black, weathers dark rusty-brown.................... 3
 18. Chert, black and white, in bands about 1 cm thick......... 13.5
 17. Covered... 6
 16. Chert, black and white banded.. 10.5
 15. Argillite, black, weathers rusty brown........................... 4.5
 14. Chert, black and white, banded... 9
 13. Argillite, black, occurs in thin bands............................. 7
 12. Limestone, medium gray, fine grained, thin bedded......... 1
 11. Argillite, black, weathers rusty brown, banded.............. 3
 10. Limestone, medium gray, very thin bedded;
 alternates with 3- to 4-mm-thick siliceous bands.......... 1.5
 9. Argillite, black, weathers rusty brown, faintly banded...... 5
 8. Limestone, medium gray, consists of 2- to 4-cm
thick bands.............................. 3
7. Chert, black and white, banded......................... 9
6. Limestone, medium gray, occurs in 2- to 4-cm-thick
 bands.................................... 2.5
5. Argillite, black, weathers rusty brown............. 1.5
4. Chert, black and white, banded..................... 3
3. Argillite, black, weathers rusty brown, banded... 6
2. Limestone, light to medium gray, very fine grained... 1.5
1. Mostly covered, but probably mostly rusty-weathering,
 black, thin-bedded argillite.................. 32.5

Total thickness of Coyote Ridge member.............145

Conformable contact
Salty Peterson member
5. Limestone, light gray, very fine grained, thin bedded...10.5
4. Argillite, black, banded.......................... 3
3. Limestone, light gray, very fine grained, thin bedded... 9
2. Covered..................................... 7.5
1. Limestone, light to medium gray, very fine grained..... 4

Thickness of Salty Peterson member..................34

Conformable contact
Buzztail Spring member (incomplete)
Moderately thick sequences of interbedded dark-gray argillite
commonly composed of 1- to 6-cm-thick beds with
thin sequences of and very fine-grained, medium-
bluish-gray limestone in beds generally a few
centimeters thick. Argillite predominates.

Thickness of two members of Mount Aggie Formation..179

Section 3c in Mount Morrison pendant. Squares Tunnel Formation (incomplete).
Measured by C.H. Stevens, August, 1994. For location see Figure 3.

Cover
Squares Tunnel Formation (Upper Devonian)
Upper member
Argillite, black.
Conformable contact

McGee Mountain Member

3. Sandstone, medium gray, calcareous, contains relatively few black chert clasts.........................126

2. Sandstone, medium gray, calcareous, black chert clasts up to 1 cm distributed throughout, no apparent bedding..25

1. Conglomerate, dark gray, composed mostly of black chert clasts up to 15 cm in diameter in a calcareous sandstone matrix interbedded with calcareous sandstone with black chert clasts distributed throughout..48

Total thickness of McGee Member.........................199

Conformable contact

Lower member

1. Shale and argillite, black, siliceous.................................135

Total thickness of lower member.................................135

Incomplete thickness of Squares Tunnel Formation......334

Conformable contact

Mount Morrison Sandstone (Middle Devonian)

Section 3b in Mount Morrison pendant. Mount Morrison Sandstone. Measured by C.H. Stevens and Tina Pelley, June 1994. For location see Figure 3.

Squares Tunnel Formation

Argillite, very dark gray

Conformable contact

Mount Morrison Sandstone (Middle Devonian)

49. Conglomerate, light gray, most clasts limestone, few argillite; mostly fine grained but some clasts up to 7 cm in diameter..15

48. Argillite, black, weathers rusty brown; some
interbedded calcareous sandstone..........................12

47. Conglomerate, fine grained, composed of limestone clasts...9

46. Sandstone, light to medium gray, coarse grained, contains chert pebbles up to 10 cm..................16.5

45. Sandstone, light to medium gray, coarse grained, contains few black chert pebbles..................10.5

44. Sandstone, light gray, calcareous with small chert pebbles; chert-pebble conglomerate in layers 0.5 to 1 m thick...8

43. Conglomerate, very coarse grained, clasts of dark-gray limestone and black chert up to 30 cm; matrix composed of coarse-grained, calcareous sandstone..5

42. Sandstone, light gray, coarse grained...3

41. Conglomerate, clasts 5 to 15 cm in a coarse grained, calcareous sandstone matrix..................4.5

40. Sandstone, light gray, coarse grained, calcareous..........................3.5

39. Conglomerate, clasts of limestone and black chert up to 10 cm in diameter, bed normally graded........1.5

38. Argillite, black, weathers rusty brown.................................6

37. Sandstone, very coarse grained, calcareous.................................4

36. Argillite, black, orange-weathering..24

35. Conglomerate, clasts mostly black chert up to 12 cm; coarse grained, calcareous sandstone matrix......3

34. Sandstone, medium to coarse grained, calcareous, laminated, contains crinoid fragments.............9

33. Conglomerate with black chert and limestone clasts 7 to 30 cm diameter; matrix of coarse grained, calcareous sandstone...18

32. Sandstone, very light gray, calcareous, massive..........................4

31. Sandstone, very light gray, calcareous, finely laminated..14

30. Conglomerate, clasts of black chert and medium gray limestone 7 to 15 cm in diameter; matrix coarse grained, calcareous sandstone..24

29. Sandstone, coarse grained, calcareous, laminated on mm scale...15

28. Conglomerate with clasts of gray limestone and black chert up to 10 cm in diameter; some discontinuous calcareous sandstone beds apparently cut out by
<table>
<thead>
<tr>
<th>Channel Type</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sandstone, very coarse grained, calcareous</td>
<td>with fragments of black argillite up to 2 cm in diameter</td>
<td>4</td>
</tr>
<tr>
<td>2. Sandstone, coarse to very coarse grained, calcareous</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>3. Sandstone, coarse grained, calcareous</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4. Sandstone, medium gray, coarse grained, calcareous</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5. Sandstone, coarse grained, calcareous</td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td>6. Covered; probably black argillite</td>
<td></td>
<td>19.5</td>
</tr>
<tr>
<td>7. Conglomerate, clasts mostly limestone with some black chert up to 0.5 m</td>
<td>matrix of coarse grained, calcareous sandstone</td>
<td>16.5</td>
</tr>
<tr>
<td>8. Argillite, black, weathered rusty brown</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>9. Sandstone, coarse grained, calcareous</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>10. Argillite, black, weathered rusty brown</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>11. Sandstone, medium gray, coarse grained, calcareous</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>12. Argillite, black, weathered rusty brown</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>13. Sandstone, coarse grained, calcareous</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>14. Argillite, black, weathers rusty-brown</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>15. Sandstone, coarse to very coarse grained, calcareous</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>16. Covered</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>17. Sandstone, light gray, coarse grained, calcareous</td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>18. Mostly covered, probably mostly rusty-weathering argillite</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>19. Conglomerate, composed mostly of limestone clasts</td>
<td></td>
<td>7.5</td>
</tr>
<tr>
<td>20. Sandstone, very coarse grained, calcareous, with faint parallel bedding</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>21. Sandstone, light gray, coarse grained, calcareous, beds</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>22. Sandstone, light tan, very coarse grained, calcareous</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>23. Conglomerate with mostly clasts of limestone with some black chert clasts in a coarse grained, calcareous sandstone matrix; clasts up to 30 cm in diameter</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>24. Sandstone, very light gray, coarse grained, calcareous</td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>25. Conglomerate, clasts mostly limestone, massive; matrix of coarse grained, calcareous sandstone</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Total thickness of Mount Morrison Sandstone............574

Unconformable contact
Convict Lake Formation (Ordovician)
Argillite, black, weathers rusty brown

Section 4a measured in Bishop Creek pendant. Squares Tunnel Formation. Measured by C.H. Stevens and D.C. Greene, July, 1993. For location see Figure 2.

Bright Dot Formation (Mississippian)
Paraconformable contact
Squares Tunnel Formation (Upper Devonian)

4. Chert, light and medium gray, impure, thin wavy bedding, weathers orange, bedding 0.5 to 1 cm thick, has a silky appearance.................................10
3. Mostly covered. Platy black argillite in float..................16
2. Argillite, black, platy with several cherty intervals with light-gray phosphatic lenses and thin beds up to about 1 cm thick...75
1. Chert, dark gray-black, rather massive in middle part where light-gray phosphatic lenses are common. Some fine sandstone or highly recrystallized chert........20

Total thickness of Squares Tunnel Formation.........121

Conformable contact
Aspen Meadow Formation
Limestone, bluish-gray, fine grained, highly altered

Section 4b in the Bishop Creek pendant. Aspen Meadow Formation (type section). Measured by C.H. Stevens and D.C. Greene, July, 1994. For location see Figure 2.

Squares Tunnel Formation
Argillite, very dark gray

Paraconformable contact
Aspen Meadow Formation (Silurian-Middle Devonian?)

17. Quartzite, very fine grained, slightly calcareous, highly silicified ... 10
16. Argillite, black, rust-weathering ... 4.5
15. Calc-hornfels, light gray, in beds 2-10 cm thick with some 5-cm-thick argillite beds ... 10.5
14. Covered; probably mostly black argillite ... 10.5
13. Limestone, light gray, in beds 5 cm thick, with thin calc-silicate layers ... 16.5
12. Calc-silicate rock, thin bedded, light gray, light brown-weathering ... 7.5
11. Covered, probably like unit 10 ... 4.5
10. Calc-silicate rock, light gray, light brown-weathering, beds about 5 cm thick, slightly wavy ... 16
9. Chert or calc-silicate rock, white, beds about 5 cm thick ... 10.5
8. Calc-hornfels, regularly banded with light-gray beds 5-7 cm thick and light-green beds 1/2 to 1 cm thick ... 36
7. Chert, light gray, in beds 1 to 10 cm thick 4.5
6. Limestone, dark gray, recrystallized, beds to 10 cm thick; few dark cherty layers ... 1
5. Similar to bed 2; beds laminated to 10 cm thick; thinner beds appear silty ... 2
4. Calc-hornfels, light gray and pale green, pale green beds predominate, beds 1 to 12 cm thick 3
3. Chert, banded, with light gray and pale green interbeds up to 10 cm thick ... 3
2. Chert, light gray, massive, in vague beds up to 10 cm thick .. 6
1. Chert, medium to light gray, rusty-weathering, in beds 10 to 25 cm thick ... 2.5

Total thickness of Aspen Meadow Formation 148.5

Contact conformable
Convict Lake Formation
Argillite, black, rusty-brown-weathering

Section 4c in Bishop Creek pendant. Convict Lake Formation (incomplete) and Mount Aggie Formation (incomplete) with Coyote Ridge member and Salty Peterson member
Cover
Convict Lake Formation (Ordovician)
2. Quartzite, brown, thick, massive, resistant, structurally complicated..............................?
1. Argillite, black..100

Incomplete thickness of Convict Lake Formation........100

Conformable contact
Mount Aggie Formation (Cambrian-Lower? Ordovician)
Coyote Ridge member
4. Covered, with float of light- and dark-gray hornfels or chert in bands up to 1 cm thick.................67
3. Mostly covered, with one outcrop of banded black argillite with small, light-gray phosphatic blebs........25.5
2. Limestone, dark gray, fine grained........................0.5
1. Chert or very cherty hornfels, black and white or black and orange on fresh surfaces, rust-weathering, bedding very even, beds 3 mm to 1 cm thick..............93

Total thickness of Coyote Ridge member................186

Contact conformable
Salty Peterson member
11. Limestone, medium gray, in beds 2 to 3 cm thick separated by 1/2-cm-thick bands of dark-gray calc-silicate rock. Thin, black argillite near base.............21
10. Argillite, black, rust-weathering...........................2
9. Limestone, medium gray, in beds 2 to 3 cm thick separated by 1/2-cm-thick, dark-gray calc-silicate bands..15
8. Limestone and calc-silicate beds, medium gray, in beds about 1 cm thick..4.5
7. Limestone, medium gray, in beds 2 to 12 cm thick......4.5
6. Calc-silicate rock, medium gray, thinly bedded to laminated...15
5. Limestone, medium gray, beds 5 to 8 cm thick with
 silty appearing chert interbeds 1 to 3 cm thick..........25.5
4. Calc-silicate rock, light gray, finely banded, bands up
 to 1 cm thick, some 1-cm-thick limestone bands.......... 3
3. Limestone, medium gray, 5 to 10 cm thick, with
 some dark-gray chert interbeds.............................. 4.5
2. Limestone, medium gray, beds 5 to 8 cm thick with
 silty appearing chert interbeds 1 to 3 cm thick..........15

1. Siltstone, dark brownish-gray with parallel laminae........2

Base covered
 Incomplete thickness of Salty Peterson member...........110

 Incomplete thickness of Mount Aggie Formation...........296