SC/EC

The Prediction Problems of Earthquake System Science

Thomas H. Jordan Director, Southern California Earthquake Center

GSA Lecture 20 October 2014

SC/EC

Earthquake System Science

- Earthquake systems
 - Models of active fault systems that predict earthquake behaviors
- Earthquake behaviors of societal interest
 - Fault rupture
 - Ground shaking *focus of this presentation*
 - Tsunami
 - Liquefaction, landsliding, and other secondary effects
- Fundamental prediction problem of earthquake system science
 - Provide *prospective* information about these behaviors useful in reducing earthquake risks and preparing for earthquake disasters

SC/EC

Fundamental Prediction Problem

Provide information about future ground motions useful in reducing earthquake risks and preparing for earthquake disasters

- Two main approaches:
 - Deterministic short-term prediction: "Earthquake shaking having a peak ground acceleration of 1 g or greater will occur in downtown LA <u>during the next month.</u>"
 - 2. Probabilistic long-term forecasting: "Earthquake shaking having a peak ground acceleration of 1 g or greater will occur in downtown LA with a 2% probability in the next 50 years."

Two Approaches to Earthquake Prediction

Deterministic Earthquake Prediction

"Silver-Bullet Approach"

- Search for diagnostic precursory signals that can predict the location, time, and magnitude of an impending event with high probability and low error rates (false alarms and failures-to-predict)
- **x** Has not yet produced a reliable method for short-term deterministic prediction

Probabilistic Earthquake Forecasting

"Brick-by-Brick Approach"

- Build system-specific models of earthquake recurrence, stress evolution, and triggering within the framework of probabilistic seismic hazard analysis (PSHA)
- Has produced reliable methods for long-term and short-term probabilistic forecasting

Fundamental Prediction Problem

Provide information about future ground motions useful in reducing earthquake risks and preparing for earthquake disasters

- Deterministic short-term prediction: "Earthquake shaking having a peak ground acceleration of 1 g or greater will occur in downtown LA <u>during the next month.</u>"
- 2. Probabilistic long-term forecasting: "Earthquake shaking having a peak ground acceleration of 1 g or greater will occur in downtown LA with a 2% probability in the next 50 years."
- Replace the first with:
 - 3. Probabilistic short-term forecasting: "Earthquake shaking having a peak ground acceleration of 1 g or greater will occur in downtown LA with a 2% probability in the next month."
- In this example, the short-term probability gain is the ratio

50 yrs ÷ 1 month = 600

– Should short-term forecasts with high-gain but low-probability be disseminated to the public?

SC/EC

Outline

- Probabilistic Seismic Hazard Analysis
 - Concepts of aleatory variability and epistemic uncertainty
- Long-term earthquake rupture forecasting
 - Uniform California Earthquake Rupture Forecast (UCERF3)
- Ground motion prediction
 - CyberShake physics-based hazard model
- Short-term earthquake forecasting
 - Operational earthquake forecasting
- Future of physics-based earthquake forecasting
 - Earthquake rupture simulators

SC/EC

SC/EC

National Seismic Hazard Map

PGA (%g) with 2% Probability of Exceedance in 50 years

- Faults accumulate stress over centuries during quasi-static tectonic loading
 - stress cycle represented by Reid *renewal* models
- Faults redistribute stress in seconds during dynamic ruptures
 - earthquake sequences represented by Omori-Utsu *clustering* models
- These two types of models are statistically opposed

"medium-term forecasting gap"

SC/EC

Southern California Earthquake Center

Long-Term Forecasting Models

Long-Term Forecasting Models

Reid model: Characteristic earthquakes occur according to a renewal distribution set by time since last event T_L , the mean recurrence interval μ , and an aperiodicity α .

Example: Brownian Passage Time (BPT) renewal model

SC/EC

Long-Term Forecasting Models

SC/EC

Uncertainties in Earthquake Rupture Forecasts

1440 branches express the epistemic uncertainties in the UCERF3 time-independent forecast

Uncertainties in Ground Motion Prediction Equations

SC/EC

Much of the aleatory variability in the GMPEs comes from 3D heterogeneity in crustal structure

ShakeOut Scenario M7.8 Earthquake on Southern San Andreas Fault

SC/EC

Full-3D Waveform Tomography

(Lee, Chen, Jordan, Maechling, Denolle & Beroza, JGR, 2014)

CyberShake Model: Physics-Based PSHA

SC/EC

CyberShake Model: Physics-Based PSHA

- Sites:
 - 283 sites in the greater Los Angeles region
- Ruptures:
 - All UCERF2 ruptures within 200 km of site (~14,900)
- Rupture variations:
 - 415,000 per site using Graves-Pitarka pseudo-dynamic rupture model
- Seismograms:
 - 235 million per model

Comparison of 1D and 3D CyberShake Models for the Los Angeles Region

CyberShake Hazard Map, 3sec SA, 2% in 50 yrs

- 1. lower near-fault intensities due to 3D scattering
- 2. much higher intensities in near-fault basins
- 3. higher intensities in the Los Angeles basins
- 4. lower intensities in hard-rock areas

Importance of Reducing Aleatory Variability

NGA(2014)-CyberShake Hazard Curve Comparisons

Site LADT (Los Angeles)

Coupling of Directivity and Basin Effects

TeraShake simulations of M7.7 earthquake on Southernmost San Andreas

- Faults accumulate stress over centuries during quasi-static tectonic loading
 - stress cycle represented by Reid *renewal* models
- Faults redistribute stress in seconds during dynamic ruptures
 - earthquake sequences represented by Omori-Utsu *clustering* models
- These two types of models are statistically opposed
 - "medium-term forecasting gap"

SC/EC

Canterbury Earthquake Sequence

Southern California Earthquake Center

Short-term Forecasting Models

SC/EC

Southern California Earthquake Center

Short-term Forecasting Models

California 29 July 2008 (Gerstenberger et al., 2005) Italy 7 April 2009 (Marzocchi & Lombardi, 2009) New Zealand 28 June 2011 (Gerstenberger, 2011)

Collaboratory for the Study of Earthquake Predictability

SC/EC

Infrastructure for automated, blind, prospective testing of forecasting models in a variety of tectonic environments and on a global scale

Southern California Earthquake Center

Testing region: Target events: Testing period: Testing method: New Zealand (Canterbury sequence) M ≥ 4 (PPE-1d), M ≥ 5 (PPE-3m, PPE-5y)

I: 4 Sept 2010 - 8 Mar 2011

Testing method: T-test

SC/EC

SC/EC

Operational Earthquake Forecasting

Timely dissemination of authoritative information about the future occurrence of potentially damaging earthquakes to reduce risk and enhance earthquake preparedness in threatened communities

Problems that confront the deployment of OEF systems:

- While the probability gains of short-term, seismicity-based forecasts can be high (> 1000 relative to long-term forecasts), the probabilities of large earthquakes typically remain low (< 1% per day)
 - Preparedness actions appropriate in such high-gain, low-probability situations have not been systematically developed
- Standardization of OEF methods and protocols is in a nascent stage
 - Incremental benefits of OEF for civil protection (e.g., relative to long-term seismic hazard analysis) have not been convincingly demonstrated
- Under these circumstances, the responsible governmental agencies have been cautious in deploying OEF capabilities
 - Progress has been made in New Zealand (on-going Canterbury sequence) and Italy (in response to the 2009 L'Aquila earthquake)

Operational Earthquake Forecasting System

- Transparency Principle: Short-term forecasting information must be delivered to the public quickly, transparently, authoritatively, and on a continuing basis
- Separation Principle: The OEF realm of hazard assessment should be kept distinct from the risk-analysis & mitigation realm of OEF users

Coupling CyberShake and UCERF3 to Forecast Time-Dependent Ground Motion Probabilities

- Pre-computed CyberShake ground motion models are easily coupled to short-term forecasting models, such UCERF3-ETAS
 - Output is a time-dependent seismic hazard estimate

- Short-term forecasting localizes epicenter probabilities
 - Coupled model achieves significant gains in ground motion probabilities through the forecasting of source directivity and directivity-basin coupling

UCERF3-CyberShake Aftershock Forecast for M6 Scenarios

Log10(Mapped UCERF2, no ETAS Hazard, 0.1G 3s SA)

UCERF3-CyberShake Aftershock Forecast for M6 Scenarios

UCERF3-CyberShake Aftershock Forecast for M6 Scenarios

California Earthquake Forecasting Models

California Earthquake Forecasting Models

SC/EC

RSQSim Earthquake Simulator

(Dieterich, 1995; Dieterich & Richards-Dinger, 2010; Richards-Dinger & Dieterich, 2012)

- Tectonic loading of faults by backslip approximation
- Rupture nucleation by rate- and state-dependent friction
- Radiation damping and dynamic overshoot
- Slip-mediated stress transfer in homogeneous elastic halfspace
- Very efficient 3-state computational algorithm

RSQSim Earthquake Simulator

(Dieterich, 1995; Dieterich & Richards-Dinger, 2010; Richards-Dinger & Dieterich, 2012)

Southern California Earthquake Center

Magnitude dependence of inter-event times on the Carrizo-Cholame sections of the San Andreas fault from a million-year catalog

Earthquake Supercycles in Rupture Simulators

Slip rate, mm/yr

Development of Physics-Based Earthquake Forecasting

SC/EC

Conclusions

- Progress is being made in solving the "fundamental problem of earthquake prediction"
 - Brick-by-brick using the probabilistic, rather than deterministic, approach
- Current methods can provide useful information for operational earthquake forecasting across a range of temporal scales
 - Statistical models of earthquake interactions can capture many of the short-term temporal and spatial features of natural seismicity
- Much of the aleatory variability in the conditional forecasting ground motions is due to 3D crustal structure
 - Accurate earthquake simulations could reduce the residual variance of the ground motion predictions by a factor of ~2
- Physics-based forecasting methods are replacing empirical methods
 - A key issue for long-term forecasting in California is the degree of rupture synchronization within the San Andreas fault system

Southern California Earthquake Center

Thank you!