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initial Holocene transgression into the Blackwater River valley 
by 5310–5570 cal yr B.P. Woody material within the silt, just 
below the peat boundary, is 690–910 cal yr B.P., setting a 
maximum age for marsh accretion. Radiocarbon samples 
collected above this boundary and within the peat have modern 
ages (GSA Supplemental Data Table S3 [see footnote 1]).

DISCUSSION 

Fluctuating sea levels, resulting from changes in eustatic sea 
level, and crustal deformation (uplift and subsidence) related to 
GIA, define the Pleistocene history of the Blackwater National 

Wildlife Refuge and the greater Chesapeake Bay region. The 
Pleistocene record and cosmogenic ages suggest that the onset of 
Northern Hemisphere glaciation at the Plio-Pleistocene boundary 
initiated cycles of incision and deposition. The paleo–Susquehanna 
River and its tributaries responded to repeated ~50–100-m sea-level 
fluctuations (Lisiecki and Raymo, 2005) with deep incision of 
river valleys during glacial lowstands and fluvio-estuarine deposi-
tion during transgressions. Estuarine conditions prevailed during 
portions of MIS 3, when global proxies indicate that eustatic sea 
level was ~40–80 m below present, suggesting prolonged relaxation 
of a MIS 6 forebulge during MIS 3.

Figure 4. (A) LiDAR-derived digital elevation model (DEM) of the Blackwater National Wildlife Refuge projected with the NAD83 datum; produced by H. Pierce (2012, 
pers. comm.); m ASL—meters above sea level. Cell size is 2.5 m by 2.5 m; graduated elevation scale indicated to the left of the image exaggerates subtle features in the 
lowest elevation ranges. White outline indicates boundary of the Blackwater National Wildlife Refuge. (B) Same LiDAR DEM as (A) in gray-scale with geomorphic 
features referenced in the text superimposed. AD 1905 channel margins were digitized from the topographic map in Figure 3A.
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Temperatures and sea levels plunged prior to ca. 30 ka, from 
their already low MIS 3 levels (Lambeck et al., 2014) (Fig. 2). As 
the LIS grew, so did the forebulge that uplifted the Chesapeake 
Bay region through the LGM, likely contributing to rapid incision 
documented along the Susquehanna and Potomac Rivers (Reusser 
et al., 2004) as the Chesapeake Bay region was transformed into a 
periglacial landscape. During the Holocene, the forebulge 
progressively subsided, as indicated by differential timing of 
Holocene inundation and variable rates of sea-level rise along the 
U.S. Atlantic Coast (Engelhart et al., 2009). The Blackwater River 
valley was inundated by ca. 5 ka, initiating deposition of bay 
bottom silt. Widespread marshes were established sometime 
within the last millennium and accreted, keeping pace with  
sea-level rise. RSL rise accelerated along the U.S. Atlantic coast 
during the twentieth century (Engelhart et al., 2009), resulting in 
inundation, erosion, and ponding in the Blackwater National 
Wildlife Refuge as sea-level rise outpaced marsh accretionary 
processes (Fig. 3) (Stevenson et al., 2002).

The presence of MIS 3 estuarine deposits near today’s sea level 
confirms the effects of GIA over long timescales for the 
Blackwater National Wildlife Refuge and supports similar inter-
pretations within the greater Chesapeake Bay region. The eleva-
tions of MIS 3 estuarine deposits generally decrease from the 
Central Delmarva Peninsula southward to North Carolina (Scott 
et al., 2010); dated, emerged MIS 3 estuarine deposits are not 
found south of North Carolina. While the maximum elevations of 
MIS 3 deposits vary (GSA Supplemental Data Fig. S8 [see footnote 
1]), decreasing elevations to the south are consistent with the 
shape of the forebulge based on subsidence rates (Engelhart et al., 
2009). High-precision GPS data, though limited to a short time 
series, also indicate the highest rates of subsidence on the Atlantic 
coast are centered on the Chesapeake Bay region (Sella et al., 2007; 
Snay et al., 2007).

Our data support the hypothesis that subsidence in the 
Chesapeake Bay region is caused by the continued collapse of the 
MIS 2 forebulge (Potter and Lambeck, 2003). While subsidence 
rates vary within the Chesapeake Bay region (Fig. 1) (Engelhart et 

al., 2009), potentially due to local groundwater withdrawal for 
commercial use (Eggleston and Pope, 2013), the central Delmarva 
Peninsula has the highest rates of subsidence in the mid-Atlantic 
region (~1.3–1.7 mm/yr; Engelhart et al., 2009). Parsing 
GIA-driven subsidence from other RSL drivers is uncertain (e.g., 
Cronin, 2012), but the agreement of twentieth-century subsidence 
values calculated from tide gauge records where effects of seasonal 
and decadal variability are removed (~1.6 mm/yr, Boon et al., 
2010) and from dated Holocene deposits (~1.3 mm/yr; Engelhart 
et al., 2009) from the same location near our study area implies 
consistency of rates over millennial timescales. Subsidence is thus 
primarily driven by GIA in the Chesapeake Bay region, which 
makes RSL rise in the Chesapeake Bay–Washington D.C. area 
twice the twentieth-century global average rate of sea-level rise 
(1.7 mm/yr; IPCC, 2013). If timescales of MIS 6 forebulge subsi-
dence are used for comparison, subsidence from the LGM foreb-
ulge collapse will continue for many more millennia.

Ongoing GIA-driven subsidence in the Chesapeake Bay region 
challenges a region already threatened by sea-level rise. At the 
Blackwater National Wildlife Refuge, we use rate consistency to 
predict ~0.16 m of subsidence for the region in the twenty-first 
century (using twentieth-century values from Boon and others 
[2010] that presumably include the effects of groundwater with-
drawal). The likely range of average global sea-level rise for the 
twenty-first century is 0.33–0.82 m, based on a non-aggressive 
climate mitigation policy (IPCC, 2013). Superimposing this sea-
level rise estimate over 0.16 m of subsidence yields a total 
predicted RSL rise of 0.49–0.98 m for the Blackwater National 
Wildlife Refuge by AD 2100.

These are minimum estimates; several lines of evidence suggest 
that sea levels will rise more quickly in the Chesapeake Bay region. 
Recent tide gauge analyses indicate the acceleration of sea-level 
rise in the North Atlantic in recent decades, possibly due to 
dynamic ocean circulation processes (Yin et al., 2010; Boon, 2012; 
Ezer and Corlett, 2012; Sallenger et al., 2012). If this acceleration 
continues, it could induce an additional rise of 15 cm for the 
Chesapeake Bay and Washington D.C. areas by AD 2100 (Yin et 

Figure 5. (A) Cross section showing the Pleistocene deposits that underlie the Blackwater National Wildlife Refuge. All ages are in thousands of years (ka). 
Italicized ages are cosmogenic burial isochrons; underlined ages are radiocarbon ages; all others are optically stimulated luminescence ages. Yellow shading 
represents Holocene deposits; green shading represents MIS 5 and MIS 3 deposits; shades of red, orange, and blue indicate three distinct paleochannel systems, 
with depths of western channels inferred from boreholes drilled off the line of section; gray substrate is the Miocene Chesapeake Group. Note break in vertical 
scale. See Fig. 4B for B–B´ line of section. See GSA Supplemental Data Figures S4 and S5 (see footnote 1) for more detail on sedimentology.
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al., 2010). Recent evidence also confirms the instability of glaciers 
in West Antarctica, which has the potential to raise global sea 
levels significantly, particularly beyond AD 2100 (Joughin et al., 
2014; Rignot et al., 2014). As global sea levels rise and the 
Chesapeake Bay region subsides, storm surges are projected to 
increase both in frequency (IPCC, 2013) and magnitude (Tebaldi 
et al., 2012). Superimposing Hurricane Isabel water levels on the 
range of RSLs we predict for the Cheapeake Bay region would 
cause a storm tide of ~3.8–4.6 m in Washington D.C. and ~2.8–
3.5 m for Chesapeake Bay (NOAA, 2003). Given the location of 
the Chesapeake Bay region along the path of storms tracking up 
the Atlantic coast (Fig. 1), increasing RSL rise will further exacer-
bate already high costs of storm damage, such as the US$65 
billion price-tag associated with Hurricane Sandy (NOAA, 2013).

Even the most conservative estimate of projected RSL rise poses 
significant threats to the Chesapeake Bay region. Bridges, military 
facilities, national monuments, and portions of the rapid transit 
system would be flooded in Washington D.C., and ~70,000 resi-
dents would be impacted by a 0.4 m rise in sea level (Ayyub et al., 
2012). Island communities in Chesapeake Bay are particularly 
vulnerable to RSL rise. The last two inhabited islands in 
Chesapeake Bay are ~1 m above sea level; they occupy the same 
geomorphic surface as the western portion of our field area and 
will experience similar rates of subsidence. In the Blackwater 
National Wildlife Refuge, a LiDAR-based inundation study using 
a conservative model for sea-level rise shows that the majority of 
tidal marsh will be inundated by AD 2050 (Larsen et al., 2004).

The elevated risk of flooding in the Chesapeake Bay region is 
already triggering a societal response. At the Blackwater National 
Wildlife Refuge, managers are designing corridors for the land-
ward migration of habitat through easements and land acquisition 
to ensure the persistence of tidal marsh beyond AD 2100. Similar 
options are increasingly limited on other coastlines, where 
continued development and site modification for housing severely 
limit the potential for inland migration of habitat, and wetland 
loss significantly reduces natural buffers to storms in these regions 
(Titus et al., 2009). Island communities have limited options; 
some Chesapeake Bay islands have been abandoned due to sea-
level rise in the past century (e.g., Gibbons and Nicholls, 2006).

For Washington D.C. and other coastal cities, risk assessment 
and adaptation planning based on the full range of possible RSL 
rise scenarios is critical. The analysis by Ayyub et al. (2012) indi-
cates significant losses for Washington D.C. with a rise of 0.4 m, 
well below the minimum predicted rise of sea level for AD 2100 of 
0.49–0.98 m. This analysis under-predicts the most likely RSL rise 
over the next century, in part because it does not explicitly 
consider that GIA will drive increased RSL independent of climate 
change. We conclude that risk assessments and adaptation plan-
ning for sea-level rise should consider the full range of sea-level 
estimates (e.g., Miller et al., 2013) and take local subsidence values 
into consideration, particularly for high-density population 
centers like Washington D.C.
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