
60

GS
A 

TO
DA

Y  
|  

AP
RI

L/
MA

Y 2
01

3 

GROUNDWORK

T
H

E  
G

EO
LO

GICAL SOCIETY OF AM
ERIC

A

Furthering the Inf luence of Earth Science

How good do natural hazard assessments need to be? 
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In trying to mitigate natural hazards, society plays a high-stakes 
game against nature. Often nature surprises us when an earth-
quake, hurricane, or flood is bigger or has greater effects than  
expected from detailed natural hazard assessments. In other 
cases, nature outsmarts us, doing great damage despite expensive 
mitigation measures.

These difficulties are illustrated by the March 2011 earthquake 
off Japan’s Tohoku coast. The earthquake was much larger than 
anticipated from hazard maps and generated a tsunami much 
larger than anticipated, which overtopped coastal defenses, caus-
ing more than 15,000 deaths and US$210 billion damage. Similar 
situations occur in predicting earthquake ground shaking (Stein 
et al., 2012), river floods (Merz, 2012), and other hazards (Pollack, 
2003; Pilkey and Pilkey-Jarvis, 2007).

Society faces the challenge of choosing mitigation strategies, 
given that assessments of potential hazard have large uncertain-
ties. This challenge is similar to that in national defense, involving 
choosing among expensive weapons and strategies to deal with 
poorly known future threats. like defense planners, hazard planners 
must decide how much is enough (enthoven and Smith, 1971; Goda 
and Hong, 2006). 

We explore choosing strategies using a simple model compar-
ing the costs and benefits of mitigation options (Stein and Stein, 
2012). For example, given the damage to new York City by the 
storm surge from Hurricane Sandy, options under consideration 
range from continuing to do little through intermediate strate-
gies like providing doors to keep water out of vulnerable tunnels 
to building barriers to keep the surge out of rivers. Progressively 
more extensive mitigation measures cost more but are expected to 
produce increasing reduction of losses in future hurricanes.

In our model, we denote the cost of mitigation as C(n), where n 
is a measure of mitigation. The scale of a natural event is param-
eterized by h, such as the height of a storm surge, an earthquake’s 
magnitude, or the level of the resulting ground shaking. The pre-
dicted annual economic loss, L(h,n) increases with h and decreases 
with n. The annual probability of an event h is p(h), so the present 
value of the expected loss is

  (1)

the sum of losses from different events weighted by their 
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probabilities. The hazard is described by p(h), the occurrence of 
events of a certain size, and Q(n) reflects the risk, which depends 
on the mitigation level n. Because the dates of future events are 
unknown, L(h,n) is the expected average direct and indirect 
annual loss.

A sum of money S invested today at interest rate i will be worth 
S(1 + i)t at a future time t, so the present value of a sum S at a fu-
ture time t is the inverse, S/(1 + i)t. Thus, we scale the future losses 
to their present value using the sum over T years 

  (2)

for large T. For interest rate i = 0.05, D
T
 = 15.4 for 30 years and 

19.8 for 100 years. For long times, 1/i gives D = 20, essentially the 
same as for 100 years. Given the long lives of mitigation measures, 
1/i is appropriate.

The optimum level of mitigation n* minimizes the total cost 
K(n), the sum of the expected loss and mitigation cost

  (3)

The “U” shaped K(n) curve illustrates the tradeoff between 
mitigation and loss (Fig. 1A). For no mitigation, n = 0, the total 
cost K(0) equals the expected loss Q(0). Initial levels of mitiga-
tion reduce the expected loss by more than their cost, so K(n) 
decreases to a minimum at the optimum. K(n) is steepest for n = 0 
and flattens as it approaches the optimum, showing the decreas-
ing marginal return on investment in mitigation. Relative to the 
optimum, less mitigation decreases mitigation costs but increases 
the expected damage and thus total cost, so it makes sense to 
invest more in mitigation. Conversely, more mitigation than the 
optimum gives less expected damage but at higher total cost, so 
the additional resources required could do more good if invested 
otherwise. 

The optimum can be viewed using the derivatives of the func-
tions, which for simplicity are shown as linear near the optimum 
(Fig. 1b). because increasingly high levels of mitigation cost more, 
the marginal cost C'(n) increases with n. Conversely, −Q'(n), 
the reduced loss from additional mitigation, decreases. The lines 
intersect at the optimum, where

  (4)

Although over-mitigation and under-mitigation are less effi-
cient uses of resources than the optimum, a range of non-optimal 
solutions is still better than no mitigation. So long as K(n) is below 
the dashed line Q(0), the total cost is less than expected from doing 
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Figure 1. (A) Comparison of total cost curves for two estimated hazard levels. 
For each, the optimal mitigation level, n*, minimizes the total cost, the sum of 
expected loss and mitigation cost. (b) In terms of derivatives, n* occurs when 
the reduced loss −Q'(n) equals the incremental mitigation cost C'(n). If the 
hazard is assumed to be described by one curve but actually described by the 
other, the assumed optimal mitigation level causes non-optimal mitigation, 
and thus excess expected loss and/or excess mitigation cost. However, so long 
as the total cost is below the loss for no mitigation (dashed line), this non-
optimal mitigation is better than none. Thus an inaccurate hazard estimate is 
useful as long as it is not too much of an overestimate.

no mitigation. The curve and line intersect again when

 (5)

which is where the benefit to society, the reduced loss compared to 
doing no mitigation Q(0) − Q(n), equals the mitigation cost C(n). 
Higher levels of mitigation cost more than their benefit and thus 
are worse than no mitigation.

because our ability to assess natural hazards is limited, we 
consider a range of total cost curves between K

1
(n) and K

2
(n), cor-

responding to high and low estimates of the hazard. These start at 
different values, representing the expected loss without mitiga-
tion, and converge for high levels of mitigation as the mitigation 
costs exceed the expected loss.

In the limiting cases, the hazard is assumed to be described by 
one curve but is actually described by the other. As a result, the 
optimal mitigation level chosen for the assumed curve gives rise 
to non-optimal mitigation, shown by the corresponding point on 
the other curve. Assuming low hazard when higher hazard is ap-
propriate causes under-mitigation and thus excess expected loss. 
Assuming high hazard when lower hazard is appropriate causes 
over-mitigation and thus excess mitigation cost. However, so long 
as this point is below the dashed line for the correct curve, the 
total cost is less than expected from doing no mitigation.

Given the range of hazard estimates, decision theory under 
deep uncertainty (Cox, 2012) suggests that society should choose 
an estimate between them. The resulting curve lies between the 
two curves and thus has a minimum between n

1
* and n

2
*. Relative 

to the actual but unknown optimum, the resulting mitigation is 
likely non-optimal but perhaps not unduly so. Moreover, so long 
as the total cost is below the actual loss for no mitigation, this 
non-optimal mitigation is better than no mitigation. 

Hazard and loss modeling are subject to uncertainties with 
various causes. In addition to the uncertainty in the probability 
of future events, uncertainty in the expected loss results from un-
certainty in specifically what occurs and how effective mitigation 
measures will be in reducing loss. For example, for an earthquake 
of a given magnitude, uncertainty arises in predicting both the 
ground shaking and the resulting damage. These uncertainties 
are typically characterized in overlapping terms, into epistemic 
uncertainties due to systematic errors and aleatory (aleae is Latin 
for dice) uncertainties due to random variability about assumed 
means. In our formulation, the different cost curves can be 
viewed as illustrating epistemic uncertainties. Aleatory uncertain-
ties can be viewed as variations about a curve and incorporated 
via a term that can also include the effects of risk aversion, which 
describes the extent to which we place greater weight on avoiding 
loss (Stein and Stein, 2012).

because the “U” curves are the sum of loss and mitigation costs, 
uncertainties in loss estimation have the same effect as those in 
hazard estimation. Hence, the two cases can be viewed as high 
and low estimates of the loss for an assumed hazard. In reality, the 
range would reflect the combined uncertainty in hazard and loss 
estimates.

The analysis illustrates two crucial points. First, a non-optimal 
mitigation strategy—which is usually the case because the deci-
sions are made politically rather than via economic analysis—still 
does more good than doing nothing as long as it is not so extreme 
that the mitigation costs exceed the benefit of reduced losses. Sec-
ond, inaccurate hazard and loss estimates are still useful as long as 
they are not too much of an overestimate. Given that most natural 
hazards assessments and estimates of the resulting losses have 
large uncertainties, it is encouraging that any estimate that does 
not greatly overestimate the hazard and loss leads to a mitigation 
strategy that is better than doing nothing.
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