Supplemental Material

METHODS

Sample collection and handling. Sediments consisting of an admixture of surface and subsurface sediments (upper 2.5 cm) were collected and preserved in the field. For petrographic thin sections the field samples were washed with distilled water and embedded in epoxy. The SEM samples were preserved in situ with 70% ethanol or 4.5% formaldehyde and kept at 5°C until further analysis, whereas samples for ACC determination (13C/1H) CPMAS–NMR analysis) were preserved following the protocol of Foran et al. (2013) and kept in 100% ethanol at 5°C until further analysis.

SEM Analysis. Field samples preserved in formaldehyde and ethanol were further processed in the laboratory with 2% gluteraldehyde and 0.2 μm millepore filtered 0.05M sodium cacodylate buffered seawater to preserve and stabilize the structures of the microbial cells and keep their integrity as close as possible to their living state. The samples were rinsed three times in the seawater buffer, dehydrated in a graded series of ethanol (20, 50, 70, 95 and 100%), and dried in three changes of Hexamethyldisiloxane (HMDS). For conductivity, the samples were coated with Pd in a plasma sputter coater. Imaging was conducted in a field emission SEM (Philips XL-30).

EPS Detection.

EPS identification was based on morphological attributes and conventional SEM descriptions of the EPS matrix, which can range from slimy thin filaments, mucous,
smooth film structures, translucent dehydrated films, honey comb structures, etc (Jones and Peng, 2012; 2014; Peng and Jones; 2013; Handley et al, 2008; Flemming and Wingender, 2010).

Microbial Identification. Diatoms were identified by the phenotypic characteristics of their silicified cell walls (frustules) while bacteria and fungi follow conventional morphological traits such as cell shape, size, and surface structure of cells, etc (Hawksworth 1988; Hasle and Syvertsen 1996; Bergmans et al, 2005).

Solid State NMR Spectroscopy. The 13C{1H} cross-polarization magic-angle-spinning (CPMAS) NMR analyses were conducted on a 400 MHz (9.4 T) Varian Infinity Plus spectrometer (Varian Associates Inc, Palo Alto, USA) operating at 100.6 MHz for 13C and 399.76 MHz for 1H. Duplicate samples were contained in a Varian/Chemagnetics ‘T3’ type probe assembly configured for 7.5 mm rotors (outer diameter) and spun at 4 kHz. The instrument running conditions used a standard ramped-CP pulse sequence consisting of an 8 μs 90° 1H excitation pulse, a 1.5 ms 1H→13C contact period during which the 13C excitation was ramped ±4 kHz about the first sideband match condition, and a 1 s relaxation delay. A 50 kHz 1H decoupling field with two pulse phase modulation (TPPM) was applied during acquisition. The final spectra represent 150,000-200,000 acquisitions. The 13C and 1H chemical shifts are referenced relative to tetramethylsilane (TMS) using adamantane as a secondary internal standard (δ^{13}C = 38.6 and δ^{2}H = 2.0 ppm).

Synthetic ACC and synthetic aragonite were used as external reference standards both of which have δ^{13}C of 169 and 171 ppm, respectively. Both compounds were synthetized according to established methods (Michel et al., 2008). The line fitting analysis of the CPMAS fit was used to eliminate experimental noise while deconvolution of the
carbonate region – performed with the instrument software Varian Spinsight – employed
the least square fit to a sum of Gaussian-shaped curves to differentiate the crystalline and
non-crystalline contributions of the spectrum and to further improve the resolution of
individual spectral components (Mehring, 1983; Morris et al. 1997). Line shape
distortions of the spectrum were removed using TMS as a reference signal prior to
deconvolution analysis (Rabenstein and Keire 1990; Morris et al. 1997.)

FIGURE LEGENDS

Fig DR1. Map of the Bahamas depicting the sampling localities.

Fig DR2. Photomicrographs of Bahamian ooids. A-B) Ooids from Joulters Cay (mean =
460 μm). Note the well-preserved exterior and defined peloidal nuclei. Some of the ooids
show fingerprints of microboring activity and accumulation of organic material (dark
color) entrapped within the cortical laminations. C-D) Ooids from Cat Cay (mean = 361
μm). Cat Cay ooids show well developed cortical laminations and peloidal nuclei. Note
that some ooids show heavy micritization along the periphery of the nucleus. E-F) Ooids
from Shroud Cay (mean = 464 μm) are also well preserved with well lamination pattern,
some of which show micritization. Some ooids display enlarged peloidal nuclei, while
others bear foraminiferous or shell fragments (arrow). G-H) Ooids from Butterfly Beach
(mean = 180 μm) are characterized by being the smallest in size with thin coatings
around the nucleus. These ooids show few endolithic borings or areas indicative of
micritization. I-J) Well-sorted medium grained ooid sands from Schooner Cays (mean =
450 μm).

Fig DR5. SEM photomicrographs documenting the ubiquitous presence of diatoms in ooid grains from the active shoals of the Bahamas. A) A pennate diatom on a shallow depression in an ooid from Cat Cay. B) A pennate diatom in an ooid outer cortex in Joulters Cay. C) A cigar shape diatom and associated EPS exudates colonizing the outer surface of an ooid from Butterfly Beach. D) A diatom and a microplate disk of the coccolithophore, *Emiliania huxleyi*. D denotes: diatom; C: coccolithophore.

Fig. DR6. SEM photomicrographs documenting unicellular asexual reproduction and a sulfur globule deposit. A) A representation of the splitting of a parental cell into two
daughter cells through binary fission, also observed by Jones et al., (2007, their Fig 6B) in sublacustrine spring deposits. B) Bulbous expansion by budding cell division, a mode of reproduction among bacterial lineages within Cyanobacteria, Planctomycetes, Firmicutes, α-Proteobacteria (Angert, 2005) and some eukaryotes (Javaux and Knoll 2016, theirs Fig 6.10). C) A sulfur globule deposit (yellow arrow) with similar morphology as illustrated by Glunk et al. (2011, their Fig 8c).

REFERENCES CITED

Jones, B., and Peng, X. 2014, Signatures of biologically influenced CaCO₃ and Mg-Fe silicate precipitation in hot springs: Case study from Ruidian geothermal area, western Yunnan Province, China: Sedimentology, 61, p. 56-89.

Peng, X, and Jones, B., 2013, Patterns of biomediated CaCO₃ crystal bushes in hot

Figure DR1
Figure DR2
Figure DR3
Figure DR5
Figure DR6