Figure S1. Scheme of the methodology followed for the contrast (A) and continuity (B) analyses, and the areas selected for large and small cells used in the calculations (c). (A) The first (Q_1) and third (Q_3) quartiles are calculated from the pixel distributions of each subsection (a.1); the interquartile difference (I_Q, a.2) is calculated by subtracting Q_1 from Q_3 and the corresponding cell is colored according to this value (a.3). (B) The reflections are separated and the major axis length (L) of each reflector body is calculated following a best-fit ellipse method (b.1); the reflection is colored according to its own L value (b.2) normalized to the rest of the section (b.3). (C) A priority area, marked by the extent of the interpreted faults was identified (red line in c.1); all the calculations were carried out first dividing the section in large cells of 7.2 km (length) × 1 km (deep) (c.2), and then using a smaller cell size of 1.6 km × 0.4 km in the priority area (c.3).