Voluminous plutonism during a period of volcanic quiescence revealed by thermochemical modeling of zircon

Casey R. Tierney1,2, Axel K. Schmitt3,4, Oscar M. Lovera3 and Shanaka L. de Silva1

1 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis OR 97331, USA
2 School of Earth Sciences and Environmental Sustainability, Northern Arizona University, 625 S Knoles Dr, Flagstaff AZ 86011, USA
3 Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles CA 90095, USA
4 Institut für Geowissenschaften, Universität Heidelberg, Im Neuenheimer Feld 234-236, 69120 Heidelberg

SUPPLEMENTAL INFORMATION

Analytical Methods

Rock samples for 40Ar/39Ar geochronology (Supplementary Table 1) were dated at the Rare Gas Geochronology Lab at the University of Wisconsin, Madison where biotite was separated by first crushing the rock then picking euhedral biotite crystals. Biotite crystals were then cleaned ultrasonically in dilute (5%) nitric acid for one minute to remove any glass. Once separated the sanidine and biotite crystals were placed in Al foil packets which were then placed in into wells in Al disks interspersed with 28.34 Ma sanidine standard from the Taylor Creek rhyolite (Renne et al., 1998). The Al disks were then loaded and irradiated for three hours in the TRIGA research reactor at Oregon State University. Once irradiated the crystal samples were returned to...
University of Wisconsin where biotite was analyzed via Single-Crystal laser-fusion (SCLF). During this process, biotite was treated with a 0.1 Watt clean-up using a defocused laser beam to release loosely bound, atmospherically absorbed, argon. Following this clean-up, the biotite was fused for 75 s and then followed by gas clean-up on two SAES GP50 getters for 600 s. Isotopic analysis and data reduction followed the procedures of Smith et al. (2003).

Zircon U-Th, U-Pb, and trace element analyses by CAMECA ims 1270 SIMS (Supplementary Table 2) at the University of California Los Angeles followed established protocols (Reid et al., 1997) modified according to Schmitt (2011). Multi-collection U-Th analyses are considered accurate to within ~2% based on replicate analyses of secular equilibrium reference zircon AS3 which yielded \(\frac{(\text{U}^{230})}{(\text{U}^{238})} = 1.021\pm0.006 \) (MSWD = 1.3; n = 34) in analyses interspersed with the unknowns. \(\text{Pb}^{206}/\text{Pb}^{238} \) dating followed procedures in Schmitt et al. (2003). Reference zircon \(\text{Pb}^{206}/\text{Pb}^{238} \) ages have an external reproducibility of 2.3% (1 standard deviation for the AS3 age; n = 49) and are accurate to within 0.85% based on a comparison with reference zircon 91500 (n = 2). Zircon trace element uncertainties are estimated from replicate analyses of reference zircon 91500 (n = 5). Standard zircon details and references are available in Supplementary Table 2.

Representative trace elements Ti, Gd, Yb, and Hf are reproducible to within 8.6%, 4.8%, 3.3%, and 1.5% (1 standard deviation) and negligibly (by +11%, -3.4%, +3.2%, and -2.5%, respectively) deviate from reference values (Supplementary Table 2).

Thermochemical Modeling

A 2-D thermal diffusion model with temperature dependent diffusivity-conductivity and incorporating the effects of magma recharge, assimilation, and fractional crystallization (RAFC) was developed using a finite difference discretization by the alternating-direction implicit
method (Press et al., 1998). All calculations were run on a grid of 20 × 60 km (wide × depth), and cell sizes of 0.1×0.1 km.

The heat diffusion equation is solved for temperature dependent diffusivity-conductivity \((\kappa(T),C_p(T))\) following the equations in Whittington et al., (2009):

\[
\kappa (\text{mm}^2\text{s}^{-1}) = \begin{cases}
567.3 / T - 0.062 & T \leq 846K \\
0.732 - 0.000135T & T > 846K
\end{cases} \tag{1a}
\]

\[
C_p (J \text{mol}^{-1}K^{-1}) = \begin{cases}
199.50 + 0.0857T - 5.0 \times 10^6 T^{-2} & T \leq 846K \\
229.32 + 0.0323T - 47.9 \times 10^{-6} T^{-2} & T > 846K
\end{cases} \tag{1b}
\]

\((\kappa = \text{thermal diffusivity}; C_p = \text{heat capacity at constant pressure}).

Crustal assimilation (only of limited importance in these models because of the comparatively shallow emplacement with cold wall rocks) uses the parameterization of Spera and Bohrson, (2001). The following parameters were used in the model:

Fractional Crystallization \((T_{\text{liq}} = \text{magma liquidus temperature}; T_s = \text{magma solidus temperature}):\)

\[
X = (T_{\text{liq}} - T) / (T_{\text{liq}} - T_s) \tag{2a}
\]

\[
F_m = 1 - X^2 \quad T_s \leq T \leq T_{\text{liq}} \tag{2b}
\]

\[
\text{if } T < T_s \Rightarrow F_m = 0; \text{ if } T > T_{\text{liq}} \Rightarrow F_m = 1 \tag{2c}
\]

Assimilation \((F_c = \text{fraction of melted and assimilated country rock}; T_{\text{la}} = \text{assimilant liquidus temperature}):\)

\[
X = (T - T_s) / (T_{\text{liq}} - T_s) \quad T_s \leq T \leq T_{\text{la}}; \quad a = 0.005 \tag{3a}
\]
\[F_c = \begin{cases} a \times (e^{2\times\ln(100)\times X} - 1) & X \leq 0.5 \\ 1 - a \times e^{2\times\ln(100)\times(1-X)} & X > 0.5 \end{cases} \]

if \(T < T_a \) \(\Rightarrow F_c = 0 \); if \(T > T_a \) \(\Rightarrow F_c = 1 \)

(3b)

Sensitivity tests agree well with published conductive cooling models (Gelman et al., 2013; Caricchi et al., 2014). Initial recharge magma temperature was 1000 °C in agreement with thermometry for mafic lavas in the Chascon-Runtu Jarita complex (Watts et al., 1999). An initial geothermal gradient of ~50 °C/km was imposed as the background thermal state of the instantaneous ellipsoidal magma intrusion of ~50 km³ emplaced at the <10 km depth consistent with the thermobarometry of the APVC domes. Note that even when a constant heat flux is imposed at the 20 km bottom of the grid, the temperature (~1000°C) agrees well with the magma recharge temperature and the estimated top of the hot zone temperature (Chmielowski et al., 1999).

In contrast to previous models (Caricchi et al., 2014), zircon generated in each cell was quantified taking into account the thermal and compositional dependence of zircon saturation (Boehnke et al., 2013). This model is unique in that it calculates the relative abundance of zircon \(F_{zrc} \) as a function of temperature. An experimentally calibrated relation between zircon saturation, temperature, and melt compositions was presented in Harrison et al. (2007) for magmas with intermediate compositions. Harrison et al. (2007) used experimental glass compositions from Carroll and Wyllie (1989;1990) to determine the compositional parameter \(M \) (= \([\text{Na}+\text{K}+2\times\text{Ca}]/\text{Al}\times\text{Si};\) Boehnke et al. 2013) as a function of T. Zircon saturation was then
calculated as a function of M and T by applying the recent re-calibration for zircon saturation in
Boehnke et al. (2013) leading to the parameterization:

$$F_{zrc} = 1.62 - 1.8 \times 10^4 e^{-10^4/T(K)}; \quad T_s \leq T \leq T_{zsat} \text{ if } T < T_s \Rightarrow F_{zrc} = 1; \quad \text{if } T > T_{zsat} \Rightarrow F_{zrc} = 0$$

(4)

No significant differences in modeled recharge rates required to match the observed zircon age
spectra were observed for modeling zircon saturation with the original Watson and Harrison
(1983) calibration. This attests to the robustness of the zircon saturation model. Because zircon
rim ages represent only a fraction of the mass of individual zircons (a rim analysis with $\sim 5 \mu m$
crater depth represents $\sim 30\%$ of the mass, for a spherical crystal with $50 \mu m$ radius) the model
sums only the last 30% of zircon crystallized in each cell, weighted by the total fraction of zircon
crystallized at the time of eruption. The average age of the last 30% of zircon crystallized is then
calculated, corresponding to the $\sim 30\%$ volume percentage of zircon sampled by depth profile
analysis.

Periodic instantaneous episodes of recharge at the center of the chamber are simulated, followed
by radial outward growth of the magma chamber following the mass conservation law. A more
protracted build-up extends the duration of zircon crystallization, but does not significantly alter
the relative abundances of newly formed vs. recycled zircons. Similarly, changing intrusion
geometry or timing (in the current model every 5 ka) yields qualitatively similar zircon
crystallization patterns.
Supplementary Figures

Supplementary Fig. 1: U from trace element analysis vs. U from geochronologic analysis.
Trace element analyses targeted the same craters as for geochronology. The scatter in U abundances is due to small-scale heterogeneities in the U abundances of zircon, but the data plot near the 1 : 1 line ensuring comparability between both data sets.

Supplementary Fig. 2: REE abundances in zircon (a, c, e, g, i) and whole rocks (b, d, f, h, j). The whole rock plot compare actual abundances with those modeled for melt using published zircon-melt distribution coefficients (Sano et al., 2002).

Supplementary Fig. 3: Zr/Hf vs. Ti in zircon. Ti in zircon is directly temperature (T) dependent (Ti-in-zircon thermometry; Ferry and Watson, 2007) and correlates well with Zr/Hf, an indirectly T-dependent compositional parameter (Claiborne et al., 2010). This supports Ti-in-zircon variations to indicate the thermal evolution of the magma.

Supplementary Fig. 4: aTiO$_2$ vs. T for zircon and Fe-Ti oxides. a One dimensional probability distribution for fixed aTiO$_2$ = 0.8. b Two-dimensional probability distribution of T$_{TiZ}$ with variable aTiO$_2$. Isopleths were calculated using the calibration from Ferry and Watson (2007) assuming melt aSiO$_2$ = 1. Individual analyses and uncertainties are color coded according to their probability. Colored circles show aTiO$_2$ and temperature T calculated for Fe–Ti oxides in domes using the calibration of Ghiorso and Gualda (2012).

Supplementary Fig. 5: Ti vs. age for zircons from APVC domes. Ti-in-Zircon temperatures determined are shown in scales to right of each dome for both 0.7 and 0.9 aTiO$_2$. Dashed lines show cooling rate of 10-4 °C/a for both 0.7 and 0.9 aTiO$_2$. Temperatures determined from Ferry
and Watson (2007) using $a\text{TiO}_2$ values determined in Supp. Fig. 4. Gray bar in panel e represents Ar-Ar sanidine eruption age (Dunne, 1998).

Supplementary Fig. 6: Temperature dependence of zircon fraction (F_{zr}), fraction of remaining melt (F_{m}), and fraction of assimilated country rock (F_c).

Supplementary Fig. 7: Example recharge-assimilation-fractional crystallization (RAFC) 2-D model cross section for 60 km width \times 20 km depth and 0.1 \times 0.1 km2 cell resolution. Finite difference discretization is carried out using the alternating-direction implicit method (see text). Red area shows extent of initially emplaced \sim50 km3 ellipsoid pluton, purple spot represents instantaneous emplacement of magma in the center of the original magma chamber, and gray ellipsoid the expansion of the magma body following recharge. The crust has a fixed steady-state geotherm (50 °C/km; 25 °C at the surface; 1,000 °C at 20 km depth) which reflects the presence of the Altiplano Puna Magma Body (APMB) and the thermal priming of the crust during the flare up (de Silva and Gosnold, 2007).

Supplementary Fig. 8: Recharge-assimilation-fractional crystallization (RAFC) 2-D model cross sections at 8 representative time slices. Hatched area shows extent of initially emplaced \sim50 km3 ellipsoid pluton, black line indicates extent of batholithic crust. Time-slices (a-h) are selected to represent the thermal evolution of a shallow intrusion via recharge with the emplacement of the initial magma at $t = 600$ ka (which corresponds to ca. 500 ka prior to eruption of the APVC domes). Periodical episodes of recharge are modeled as instantaneous emplacement of magma in the center of the original magma chamber (every 5 ka at a time-integrated rate of 1.08×10^{-3} km3/a), which in this case terminates at 500 ka. See Supplementary Figure 7 for additional model details.
Supplementary Tables

Supplementary Table 1: Biotite 40Ar/39Ar ages. 40Ar/39Ar eruption ages obtained for each dome (sanidine for Chascon-Runtu Jarita, Dunne, 1998; biotite for the other four domes). Ages range between ca. 87 and 120 ka. Biotite ages define the upper limit of this range, and are considered maximum ages due to the likely presence of unsupported 40Ar (Hora et al., 2010). We therefore interpret the eruption age of all these domes to be ~85–100 ka. This is consistent with the youngest dates revealed by zircon rims from each dome.

Supplementary Table 2: Zircon geochronology and trace element data. Details related to reference zircons AS3 and 91500 are located in Paces and Miller (1993) and Wiedenbeck et al. (1995), respectively.

Supplementary Table 3: Summary of Thermal Model Parameters.

References Cited

Paces, J.B., and Miller, J.D., 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic,

Tierney et al. Supplementary Figure 2
Tierney et al. Supplementary Figure 4
Tierney et al. Supplementary Figure 6
Tierney et al. Supplementary Figure 7
Recharge 1 km3/kyr

- 600 ka initial pluton
- 575 ka
- 600 ka
- 400 ka
- 300 ka
- 200 ka
- 100 ka (eruption, end of recharge)
- 0 ka today

Tierney et al. Supplementary Figure 8