Obliquity-forced climate during the Early Triassic hothouse in China

Mingsong Li, Chunju Huang*, Linda Hinnov*, James Ogg, Zhong-Qiang Chen, and Yang Zhang

* E-mails: huangej@cug.edu.cn; lhinnov@gmu.edu.

This file includes:
1. Supplementary text
2. Methods and Matlab scripts
3. Figures DR1-6
4. References

1. Supplementary Text

1.1 Gamma-ray as climate proxy
Total gamma-ray intensity (GR) in sedimentary rocks is a proxy for terrestrial weathering. GR of sediments is dominated by potassium (K), uranium (U) and thorium (Th) (e.g., Ruffell and Worden, 2000; Schnyder et al., 2006). K is common in many minerals such as clays, feldspar, mica, and chloride salts. U and Th are concentrated in a number of sedimentary host minerals including clays, feldspar, heavy minerals, and phosphate, and U is often concentrated in organic matter (Schnyder et al., 2006). In the Early Triassic, post-extinction interval sedimentary rocks are depleted of organic matter, and high GR values are attributed to clay-rich sediments, whilst lower GR values are generally linked with coarser-grained rocks and carbonates. Variable clay content may be related to climate change from Milankovitch forcing, e.g., during high eccentricity when hotter summers relative to winters could have resulted in intensified weathering and stronger monsoonal climate. More rainfall and runoff would result in more clay influx into the marine depositional environment, resulting in high GR and U, and vice versa. Modern deep weathering of outcrops can result in leakage of K and U (Osmond and Ivanovich, 1992). Here, new road-cut sections at Daxiakou and Chaohu are fresh which minimizes dissolution from modern weathering (Fig. 1).

1.2 Sea-level fluctuations in the Early Triassic
Recurrent rapid decreases in sea level are known from diverse locations in the Early Triassic, including the South China (Tong and Yin, 1988) and European basins (Gianolla and Jacquin, 1998; Hardenbol et al., 1998), the Canadian Arctic (Embry, 1997) and the Arabian Platform (Haq and Al-Qahtani, 2005). The global sea-level chart indicates several major (>25 m or even >75 m) sea-level falls during the Early Triassic (Hardenbol et al., 1998; Snedden and Liu, 2010), which appear to have been too fast and too widespread to have been caused by tectonics, and were therefore likely triggered by a limno-eustatic process as discussed in the main text.

1.3 La2004 and La2010d astronomical solutions
La2004 (Laskar et al., 2004) and La2010 (Laskar et al., 2011a) are numerical solutions to Earth’s astronomical parameters for the past 250 m.y. Solutions La2010a, b and c are based on INPOP08 while
La2010d is based on INPOP06 (Laskar et al., 2011a), which was later shown to be more precise than INPOP08 (Fienga et al., 2011; INPOP=Intégration Numérique Planétaire de l’Observatoire de Paris). La2010d is reliable back to 50-60 Ma (Laskar et al., 2011a). While a strictly accurate astronomical solution is not available for times before 60 Ma (Laskar et al., 2011a; Laskar et al., 2011b; Westerhold et al., 2012), the 1.2 m.y. obliquity modulation persists in both La2004 and La2010d solutions through 249 Ma (Fig. DR5). The obliquity and precession index for the La2010d solution are calculated using the procedure provided in Appendix A of Wu et al. (2013), and setting “datedebut=−249.D0”.

1.4 Secular resonance between Earth and Mars orbits and the 1.2 m.y. cycle
Laskar (1990) demonstrated that secular resonance exists between the motions of Earth and Mars corresponding to \((s_4-s_3)-2(g_4-g_3) = 0\), where \(g_3\) and \(g_4\) are secular frequencies contributing to motions of the Earth and Mars orbital perihelia, and \(s_3\) and \(s_4\) are secular frequencies describing motions of their orbital inclinations (3=Earth, 4=Mars). This resonance has been in a librational state, but can evolve into a rotational state, and even to a second librational state, namely \((s_4-s_3)-(g_4-g_3) = 0\). Transitions between these two states are associated with chaotic motions of the planets. The \(g_4-g_3\) term appears in Earth’s orbital eccentricity as a ∼2.4 m.y. period component, and can be detected in the amplitude modulation envelope of precession-forced stratigraphy; \(s_4-s_3\) appears as a ∼1.2 m.y. amplitude modulation in obliquity-forced stratigraphy (Hinnov, 2000). The motions of other, larger planets also have great impact on Earth’s paleoclimate change, for example, two of the leading terms in Earth’s orbital eccentricity involve Jupiter, \(g_2-g_5\) (405 k.y. period) and \(g_4-g_5\) (95 k.y. period) (Laskar et al., 2004). (Note: 2=Venus, 5=Jupiter). While \(g_4-g_3\) is ranked 8th in amplitude in its direct contribution to Earth’s orbital eccentricity, it has a strong effect as a long-period amplitude modulator of the orbital eccentricity arising from simple combinations of Venus terms \([(g_4-g_2)+(g_3-g_2)]\) and Jupiter terms \([(g_4-g_3)+(g_3-g_5)]\) (Matthews et al., 1997). An analogous strong effect occurs from the Earth’s orbital inclination terms that modulate the obliquity variation.

2. Methods and Matlab scripts

2.1 GR time-series
GR was measured using a RS-230 BGO Super-SPEC gamma detector. Our measurements used a recording time of 60-120 seconds, and were taken at 5-10 cm intervals at Daxiakou and the majority of Chaohu, and varied from 5 to 20 cm depending on rock exposure in the middle of the Chaohu section. A total of 3007 measurements were taken from the 300 m thick Chaohu section and 1605 measurements from the 135 m thick Daxiakou section.

2.2 Time-series analysis
The GR series were pre-whitened using the Matlab function “smooth.m” with the “lowess” or “rloess” option to remove long-term irregular trends. Evolutionary fast Fourier transform (FFT) spectrograms of the untuned and tuned GR series were calculated using Matlab script “evofft.m” (Kodama and Hinnov, 2014). Based on the indicated wavelengths of the major cycles in the spectral analysis, Gaussian bandpass filtering was applied in AnalySeries 2.0.8 (Paillard et al., 1996) to isolate potential astronomical parameters. The tuned GR series were linearly interpolated to mean time sample rate and resampled in Matlab using script “resample.m”. Time series data were analyzed with the multi-taper method (MTM) spectral estimator (Thomson, 1982) using Matlab script “redconf.m” by Dorothée Husson (2014); estimated spectra are compared with red noise models at the 90%, 95% and 99% confidence levels.
2.3 Obliquity power/total power (O/T)
For modeled O/T, we use 10*E+3*O-2*P for both La2004 and La2010d solutions to construct the target model, where E, O and P are standardized (zero mean, unit variance) theoretical orbital eccentricity, obliquity and precession index. The ratio (10:3:2) of E, O and P is based on the relative variance (power) in the eccentricity, obliquity and precession bands of the tuned Chaohu and Daxiakou series (Fig. DR4). Modeled and observed obliquity power was integrated from 1/24 k.y. to 1/45 k.y. frequency band in the estimated power spectra. Total power was integrated from 0 to Nyquist frequency. These power estimates were calculated from 2π MTM power spectra and a 500 k.y. sliding window using Matlab script “pda.m”. An extrapolation from 249 to 253 Ma was made for the modeled O/T curves using least-squares fitting (Matlab scripts presented below in Section 2.4, including “deharm.m” in Kodama and Hinov, 2014).

2.4 Matlab scripts
The Matlab scripts are provided at https://doi.pangaea.de/10.1594/PANGAEA.859147. The zipped file contains the individual Matlab scripts that were used to generate the modeled obliquity amplitude modulations presented in Fig. 3A and Fig. DR5. Each m-file contains header information that explains its functionality in more detail.

3. Figures DR1-DR6

Figure DR1. Early Triassic paleography of South China modified from Feng et al. (1997).
Figure DR2. Correlation of Chaohu and Daxiakou sections with the GR (gamma-ray) logs at each section (Li et al., 2016). Biostratigraphy follows Zhao et al. (2007, 2013). Substages boundaries follow Zhao et al. (2007, 2013) and Li et al. (2016). Paleomagnetic polarity patterns at Chaohu follow Sun et al. (2009) and Li et al. (2016). δ¹³C data are from Tong et al. (2007). Filtered GR (red) and interpreted eccentricity cycles are from Li et al. (2016). H. typicalis: Hindeodus typicalis, N. k.: Neogondolella krystyni, Nc. discreta: Neoclarkina discreta; S. k.: Sweetospathodus kummeli, N. d.: Neospathodus dieneri, eowaageni: Novispathodus waageni eowaageni, Nov. p.: Novispathodus pingdingshanensis, Tr. homeri: Triassospathodus homeri, Mag: Magnetostratigraphy.

Figure DR3. Correlation of the Daxiakou section and the Chaohu section, South China. The Daxiakou section correlates well with the Chaohu section in gamma-ray (GR), δ¹³C, lithology and biostratigraphy. Biostratigraphy follows Zhao et al. (2007, 2013). Substages boundaries follow Zhao et al. (2007, 2013). δ¹³C data are from Tong et al. (2007). See caption of figure DR2 for abbreviations of conodont zones.
Figure DR4. Spectral analysis. 2π MTM power spectra with red noise models of the 405-k.y. tuned GR time series (Li et al., 2016). A: The complete Chaohu series, less a 15% “lowess” trend, and B: the Triassic portion of the Daxiakou series (0-4.6 m.y.) less a 25% “lowess” trend, both shown with a robust red noise model calculated with linear fitting and a 20% median smoothing window. C: Eccentricity-obliquity-precession time series of the La2004 model (Laskar et al., 2004) from 245 to 249 Ma. CL: confidence level.
Figure DR5. Modeled and observed obliquity amplitude modulations. A: Obliquity power (1/(24-k.y.) to 1/(45-k.y.) band) compared to total power (0 to Nyquist band), O/T, of the La2004 (black; Laskar et al., 2004) and La2010d (green; Laskar et al., 2011a) ETP series from 230 Ma to 249 Ma (the oldest modeled time provided for the two models) with 2π MTM spectra and a 500 k.y. sliding window (filled area). Also shown are extrapolations to 253 Ma of the modulations (solid lines) computed by least-squares fits to the sum of two Gauss bandpass-filtered outputs of 1.2-m.y. and 2.4-m.y. cycles of O/T from both solutions (dashed lines, passbands: 0.00083±0.0001 and 0.0004±0.00008 cycles/k.y.). B: Extrapolations of the dotted lines from...
245.8 to 253.2 Ma as in A. Black: La2004 (Laskar et al., 2004), Green: La2010d (Laskar et al., 2011a), C: From bottom to top: O/T (filled area) of Chaohu (blue) and Daxiakou (red) with a 2.5-m.y.-window “rloess” local regression using Matlab function “smooth.m” (dashed); detrended O/T are O/T less the 2.5-m.y.-window “rloess” trend; and filtered 1.2-m.y. O/T cycles (Gauss filter, passband: 0.00083 ± 0.0001). Dien: Dienerian.

Figure DR6. Cooling episodes in the Early Triassic based on δ¹⁸O of conodont apatite from A: South China (Sun et al., 2012) and B: Salt Range (Romano et al., 2013). Dashed vertical lines indicate substage boundaries used for calibrating δ¹⁸O records to the time scale of Li et al. (2016). Dien: Dienerian.

4. References

Romano, C., Goudemand, N., Vennemann, T. W., Ware, D., Schneebeli-Hermann, E., Hochuli, P. A., Bruhwiler, T., Brinkmann, W., and Bucher, H., 2013, Climatic and biotic upheavals following the end-Permian mass extinction: Nature Geoscience, v. 6, no. 1, p. 57-60.

