General Geology

Great Basin Region (NV) – Shingle Pass, Antelope Range, and Meiklejohn Peak

The depositional environment of the Great Basin region during the Ordovician was a passive margin carbonate ramp with intermittent influxes of siliciclastic sediment (Ross et al., 1989). The oldest rocks sampled in this study are from the Pogonip Group and are earliest Ordovician (Tremadocian) in age based on the conodont faunas present (Sweet and Tolbert, 1997; Fig. 3). The Pogonip Group contains, from base to top, the House Limestone, Parker Spring Formation, Shingle Limestone, Kanosh Shale, and Lehman Formation, which are overlain by the Middle-Upper Ordovician Eureka Quartzite (Kellogg, 1963; Ross et al., 1989). The Middle Ordovician lithostratigraphic units (Shingle Limestone to Lehman Formation) differ in the Antelope Range and Meiklejohn Peak sections and are known as the Antelope Valley Limestone and Copenhagen Formation, which is also overlain by the Eureka Quartzite (Figs. 3 and 4). Carbonate lithologies range from sparsely fossiliferous micrite with minor amounts of siliciclastic silt and clay grains (e.g., House Limestone) to fossiliferous wackestone-packstone beds (Antelope Valley Limestone, Shingle Limestone), sometimes interbedded with laminae to thin beds of siliciclastic mudstone (Parker Spring, Copenhagen Formation, Lehman Formation) (Ross, 1970; Ross and Shaw, 1972; Young et al. 2009; Edwards and Saltzman, 2014).

Conodonts from the Great Basin region range in alteration from the least altered in the Antelope Range (CAI: 1-2), to moderate at Shingle Pass (CAI: 3-4.5), to the most altered in this study at Meiklejohn Peak (CAI: up to 5) (Harris et al., 1979; Sweet and Tolbert, 1997).
The Middle-Upper Ordovician Simpson Group is exposed along roadcuts of Interstate-25, US-77, and US-99 in the Arbuckle Mountains in south-central Oklahoma (Bauer, 1987, 1994, 2010). The Simpson Group contains a mixed succession of siliciclastic quartz sandstone, siltstone, and shale interbedded with massive to well-bedded limestone, which ranges from micritic mudstone to coarse-grained grainstone (Fay, 1989; Derby et al. 1991). The oldest formation of the Simpson Group is the Joins, which is overlain by the Oil Creek, McLish, Tulip Creek, and Bromide formations (Fig. 5). During the Middle Ordovician, sedimentation along the Southern Oklahoma Embayment is interpreted to have occurred on a carbonate ramp along a rifted margin, possibly the conjugate margin of the Argentine Precordillera (Thomas and Astini, 1996; Albanesi and Bergström, 2010). Conodonts from the Simpson Group are some of the least thermally altered conodonts sampled in this study and yield CAI values of 1-2.

The Paleozoic strata in the Appalachian Region have been folded and faulted during the Appalachian Orogeny and subsequent erosion has exposed numerous sections of Ordovician strata that contain a wide range of lithologies. The Clear Spring section is an excellent exposure of Ordovician strata located along an Interstate-70 roadcut in the Valley and Ridge Province of central Maryland (Fig. 1). The section includes the upper portion of the Beekmantown Group, the entire St. Paul Group, and the lower portion of the Chambersburg Limestone (Leslie et al., 2011; Brezinski et al., 2012; Fig. DR2). The Beekmantown Group comprises well-bedded lime micrite of the Rockdale Run Formation and cyclic thin-medium beds of dolomitic lithologies of
the Pinesburg Station Dolomite interpreted by Brezinski et al. (2012) to have accumulated in a restricted tidal flat environment.

The Rocky Gap section is exposed along a roadcut of Interstate-77 in southwestern VA (Fig. 1), the base of which is recognized as the massively bedded Knox Dolomite. The upper contact of the Knox Dolomite is an erosional surface with locally present karstic features and has been studied in detail for its significance in recording changes in sea level and tectonics in the Appalachian basin (Mussman and Read, 1986; Read and Eriksson, 2012). Known as the Knox Unconformity, this surface is recognized throughout the Appalachian basin from northern Virginia south to Alabama and is interpreted to record a sea level lowstand that represents the boundary between the Sauk-Tippecanoe megasequences (Brezinski et al., 1999; Brezinski et al., 2012). This surface is also recognized in the I-81 section (near Strasburg, VA) where karstic features are present (Leslie et al., 2011). In central Pennsylvania, the Beekmantown Group/Knox Dolomite is recognized as the Bellefonte Dolomite.

Overlying the Beekmantown Group in the Clear Spring section is the St. Paul Group. The base of the St. Paul Group is comprised of massive fenestral limestone and dolomites of the Row Park Formation and transitions into laminated lime- and dolo-micrite with stromatolitic beds near the base of the New Market Formation. At the Interstate-81 section only a few meters of this fenestral micritic limestone of the New Market Formation is present (Leslie et al., 2011). The New Market Formation and overlying Chambersburg Limestone are interpreted to reflect a relative deepening of the basin with more open marine circulation based on the increasing abundance of argillaceous and fossiliferous wackestone. In the Rocky Gap section, a portion of the St. Paul Group is recognized as the Elway Formation, a chert nodule-bearing limestone at its base that grades into an argillaceous limestone into the overlying Benbolt and Witten formations.
(Fig. 7). Similar lithologies are present at the Roaring Spring-Union Furnace section (central PA) where age-equivalent strata are represented by basal wackestone-grainstone lithologies of the Loysburg Formation, up through the thick-beded lime mudstone-wackestone lithologies of the Nealmont Formation interpreted to record deposition in deeper facies (see Laughrey et al. (2004) for a more detailed description of bed-by-bed lithologies and paleoenvironmental interpretation of these units).

Conodonts from the Appalachian Basin have experienced a moderate amount of thermal alteration, and conodont elements have CAI values between 3 and 5.

Methods

Variation of bulk rock dissolution methods

Because variations in Sr concentration of bulk carbonate and burial temperature as inferred from conodont alteration index (CAI) do not always predict $\Delta^{87}Sr^{86}Sr$, we have evaluated the importance of sample preparation, dissolution, and insoluble residues. Three bulk carbonate samples with a range of $\Delta^{87}Sr^{86}Sr$ values from the Shingle Pass section were selected to test how variations in the methods used to isolate carbonate-associated Sr may affect the $^{87}Sr^{86}Sr$ (Tables DR4 and DR6).

A selection of eight insoluble residues from the bulk carbonate samples (Table DR6) was digested in a strong acid solution to document the end member of radiogenic $^{87}Sr^{86}Sr$ values from siliciclastic material that may have been a source for post-burial isotopic exchange (cf. Bailey et al., 2000). An acidic solution of 29M HF (80%), 6N HNO$_3$ (10%), and 6N HCl (10%) was added to residues in sealed Teflon beakers, which were placed on a hotplate for several days
until completely dissolved. Aliquots of Sr from dissolved residues were separated using the same cation exchange resin described in the main text.

Pre-leaching of conodonts

To test the effects of how a pre-leach step might affect the measured radiogenic $^{87}\text{Sr}^{86}\text{Sr}$ value (cf. Ruppel et al., 1996; John et al., 2008), a small subset of six conodonts from three localities was selected (Table DR6). Following the methods of John et al. (2008), conodonts were rinsed in 0.5% acetic acid overnight to dissolve the outer layer of apatite. The leachate was removed to a spiked beaker and Sr was separated using the cation exchange resin. The leached conodonts were then dissolved in 6N HCl using the same procedure used in the main study.

Scanning electron microscopy

Two brachiopods were imaged using scanning electron microscopy to document how the microstructural preservation of these samples compared to their $^{87}\text{Sr}^{86}\text{Sr}$ values. One sample was selected that had little apparent recrystallization (SP-165.5) and one that had some possible signs of alteration (B-2739; Table DR3). Samples were sputter coated in a Au-Pd alloy and imaged using an FEI Quanta Field Emission Gun scanning electron microscope housed in the Subsurface Energy Materials Characterization and Analysis Lab (SEM-CAL) at The Ohio State University. A beam intensity of 15 kV and spot size of 4 mm were used for imaging.

Results

Variations of bulk carbonate methods
We sought to test whether the measured $^{87}\text{Sr}/^{86}\text{Sr}$ ratio was contaminated by secondary Sr sourced from pore fluids or radiogenic clay minerals present in the powdered samples. Variations in the treatment of these bulk carbonate samples (see Methods section) only reduced the $^{87}\text{Sr}/^{86}\text{Sr}$ value by at most 0.000088 compared to the sample with no ammonium acetate or pre-leach steps. In none of the methods was the amount of pre-treatment or pre-leaching able to lower $^{87}\text{Sr}/^{86}\text{Sr}_{\text{carb}}$ values to the $^{87}\text{Sr}/^{86}\text{Sr}_{\text{seawater}}$ trend, suggesting that the highly radiogenic $^{87}\text{Sr}/^{86}\text{Sr}_{\text{carb}}$ values do record a diagenetic signature and are not artifacts of sample preparation. The $^{87}\text{Sr}/^{86}\text{Sr}$ of the insoluble residue fractions were also measured to determine if these residues may have contributed to highly radiogenic $^{87}\text{Sr}/^{86}\text{Sr}$ values, but the results are inconclusive (Fig. DR6) and require a more detailed investigation.

Scanning electron microscopy

Analysis of the brachiopod samples using scanning electron microscopy show a range of preservation of microstructures and secondary shell layers (Figs. DR4 and DR5). The secondary shell layers from sample SP-165.5 show well-preserved laminae with little evidence for recrystallization. However, the $^{87}\text{Sr}/^{86}\text{Sr}_{\text{brach}}$ value is significantly more radiogenic than the $^{87}\text{Sr}/^{86}\text{Sr}_{\text{seawater}}$ even though the microstructures appear to be pristine. The corresponding $^{87}\text{Sr}/^{86}\text{Sr}_{\text{conodont}}$ value is also significantly more radiogenic than the $^{87}\text{Sr}/^{86}\text{Sr}_{\text{seawater}}$ trend, suggesting that some degree of isotopic exchange occurred in both materials with the surrounding radiogenic red shaley limestone despite the lack of physical evidence of alteration. However, sample B-2739 has evidence of significant alteration with micro-vuggy porosity and a lack of well-defined secondary shell layers. Although the microstructure exhibits overall poor
preservation, the $^{87}\text{Sr}/^{86}\text{Sr}_{\text{brach}}$ value is indistinguishable from corresponding $^{87}\text{Sr}/^{86}\text{Sr}_{\text{conodont}}$
values and is only slightly more radiogenic than the $^{87}\text{Sr}/^{86}\text{Sr}_{\text{seawater}}$ trend (0.000056; Fig. 6).

REFERENCES CITED

Albanesi, G.L., and Bergström, S.M., 2010, Early-Middle Ordovician conodont
paleobiogeography with special regard to the geographic origin of the Argentine
Precordillera: a multivariate data analysis: in Finney, S.C., and Berry, W.B.N., eds., The
Ordovician Earth System: Geological Society of America Special Paper 466, p. 119-139.

Bauer, J.A., 1987, Conodonts and conodont biostratigraphy of the McLish and Tulip Creek
Formations (Middle Ordovician), south-central Oklahoma: Oklahoma Geological Survey

Bauer, J.A., 1994, Conodonts from the Bromide Formation (Middle Ordovician), south-central

Bauer, J.A., 2010, Conodonts and conodont biostratigraphy of the Joins and Oil Creek
Formations, Arbuckle Mountains, South-central Oklahoma: Oklahoma Geological

Brezinski, D.K., Repetski, J.E., and Taylor, J.F., 1999, Stratigraphic and paleontologic record of
the Sauk III regression in the central Appalachians: National Park Service
Paleontological Research, v. 3, p. 32-41.

off-platform facies of the Great American Carbonate Bank in the Central Appalachians,
The great American carbonate bank: the geology and economic resources of the
Cambrian-Ordovician Sauk megasequence of Laurentia, American Association of

Derby, J.R., Bauer, J.A., Miller, M.A., Creath, W.B., Repetski, J.E., Dresbach, R.I., Ethington,
Williams, M., 1991, Biostratigraphy of the Timbered Hills, Arbuckle, and Simpson
Groups, Cambrian and Ordovician, Oklahoma: a review of correlation tools and
techniques available to the explorationist: Oklahoma Geological Survey Circular, v. 92,
p. 15-41.

John, E.H., Cliff, R., and Wignall, P.B., 2008, A positive trend in seawater 87Sr/86Sr values over the Early-Middle Frasnian boundary (Late Devonian) recorded in well-preserved conodont elements from the Holy Cross Mountains, Poland: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 269, p. 166-175.

Ross, R.J.Jr., 1970, Ordovician brachiopods, trilobites, and stratigraphy in eastern and central

Supplement Figure Captions:

Figure DR1. 87Sr/86Sr from bulk rock (this study) and conodont apatite (see Saltzman et al., 2014) from the Meiklejohn Peak section (Nevada). Conodont biostratigraphy from Harris et al. (1979). UO=Upper Ordovician. Gray circles indicate least altered bulk carbonate samples with [Sr] >300 ppm. The large offset between the 87Sr/86Sr$_{seawater}$ curve and brachiopod data is attributed to the uncertainty in the ages assigned to 87Sr/86Sr$_{conodont}$ values.

Figure DR2. 87Sr/86Sr from bulk rock (this study) and conodont apatite (see Saltzman et al., 2014) from the Clear Spring section (Maryland). Two 87Sr/86Sr$_{carb}$ uncertainties are plotted where the uncertainty is wider than the width of the data point. Conodont biostratigraphy from Leslie et al. (2013). Gray circles indicate least altered bulk carbonate samples with >300 ppm Sr.

Figure DR3. 87Sr/86Sr from bulk rock and conodont apatite from the Interstate-81 section (Virginia). Note that bulk carbonate 87Sr/86Sr measured from dolomite lithologies (dashed symbol lines) of the Beekmantown Formation are highly variable and significantly more radiogenic than corresponding conodont 87Sr/86Sr. Conodont 87Sr/86Sr values do not change across the contact between the Beekmantown and New Market formations, suggesting that not much geologic time is missing in this locality compared to Rocky Gap, VA.
Figure DR4. Secondary electron image of the well-preserved secondary layer of brachiopod calcite (SP-165.5).

Figure DR5. Secondary electron image of the poorly preserved secondary layer of a brachiopod (B-2739) with vuggy porosity and the appearance of recrystallization along pore spaces.

Figure DR6. Conodont Sr concentrations versus CAI shows no significant correlation and that conodonts with high CAI values can contain about as much Sr as conodonts with the lowest CAI values.

Figure DR7. Cross plot of $\Delta^{87}\text{Sr}/^{86}\text{Sr}$ values versus the difference between the $^{87}\text{Sr}/^{86}\text{Sr}$ of eight insoluble residues and the corresponding $^{87}\text{Sr}/^{86}\text{Sr}_{\text{seawater}}$ value. There appears to be no correlation between highly radiogenic insoluble residues and highly altered bulk carbonates.

Figure DR8. Predicted changes in the Sr concentration (upper plots) of a limestone with 50% porosity, porefluid Sr/Ca ratio of 0.01, $D_{\text{Sr}} = 0.05$ (cf. Banner and Hanson, 1990), and [Ca] of the equilibrating fluid at increasing water:rock weight ratios (N) (Compare with Figure 8 of the main text). Also shown are the expected changes in the $^{87}\text{Sr}/^{86}\text{Sr}$ of a limestone with a fluid with a highly radiogenic $^{87}\text{Sr}/^{86}\text{Sr}$ value (0.7200; middle plots), and a fluid with a near-seawater $^{87}\text{Sr}/^{86}\text{Sr}$ value (lower plots).

Tables DR1–DR9 (2015123_TablesDR1-DR9.xlsx)
<table>
<thead>
<tr>
<th>Series</th>
<th>Stage</th>
<th>Conodont Zone</th>
<th>Formation</th>
<th>Meiklejohn Peak, NV (CAI = High)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UO</td>
<td>SANDBIAN</td>
<td>gerdae</td>
<td>Eureka</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sweeti</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>friends-villensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DARRIWILAN</td>
<td>polonicus</td>
<td>Antelope Valley Limestone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>holodentata</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Middle Ordovician</td>
<td>Middle Member</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper Member</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>87Sr/86Sr</th>
<th>0.7084</th>
<th>0.7086</th>
<th>0.7088</th>
<th>0.7090</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Bulk carbonate
- Bulk carbonate (> 300 ppm Sr)
- Conodont
- Seawater 87Sr/86Sr

Figure DR1 - Edwards et al.
<table>
<thead>
<tr>
<th>Series</th>
<th>Stage</th>
<th>Conodont Zone</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Ordovician</td>
<td>SANDBIAN</td>
<td>tvaerensis</td>
<td>Chambersburg</td>
</tr>
<tr>
<td>Middle Ordovician</td>
<td>DARRIWILIAN</td>
<td>sweeti</td>
<td>New Market</td>
</tr>
<tr>
<td></td>
<td></td>
<td>?</td>
<td>Row Park</td>
</tr>
<tr>
<td></td>
<td></td>
<td>friends-villensis</td>
<td>St. Paul Group</td>
</tr>
<tr>
<td></td>
<td>DAPINGIAN</td>
<td>polonicus</td>
<td>Pinesburg Station Dolomite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>holodentata</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sinuosa</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>altifrons</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>compressus/ clypeus</td>
<td>Rockdale Run</td>
</tr>
</tbody>
</table>

Figure DR2 - Edwards et al.
<table>
<thead>
<tr>
<th>Series</th>
<th>Stage</th>
<th>Conodont Zone</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle Ordovician</td>
<td>DARRIWILIAN</td>
<td>friendsvillensis</td>
<td>New Market</td>
</tr>
<tr>
<td></td>
<td></td>
<td>polonicus</td>
<td>Beekmantown</td>
</tr>
</tbody>
</table>

Interstate I-81, VA (CAI = High)

- ○ Bulk carbonate
- ■ Conodont
- --- Seawater 87Sr/86Sr

Figure DR3 - Edwards et al.
Figure DR4 - Edwards et al.
Figure DR5 - Edwards et al.
Figure DR6 - Edwards et al.
Figure DR7 - Edwards et al.

\[\Delta^{87}\text{Sr} / ^{86}\text{Sr} \]

\[87\text{Sr} / 86\text{Sr}_{\text{residue}} - 87\text{Sr} / 86\text{Sr}_{\text{seawater}} \]

\[r^2 = 0.042 \]
Figure DR8 - Edwards et al.