Supplementary Material for Rheological controls on the emplacement of extremely high-grade ignimbrites

A.1. Details of Numerical Modeling

The time-dependent conduction of heat in one dimension considering strain heating as the only internal heat production can be written as:

\[
\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial z^2} + \frac{Q_{\text{strain}}}{C_p \rho}
\]

(A1)

where \(T \) is temperature, \(t \) is time, \(D \) is the thermal diffusivity, \(z \) is the depth in the shear zone, \(C_p \) is the heat capacity of the melt, and \(\rho \) is the density of the melt. \(Q_{\text{strain}} \) is the volumetric strain heating in the shear zone, and is given by:

\[
Q_{\text{strain}} = \sigma \dot{\varepsilon}
\]

(A2)

Here \(\sigma \) is the shear stress, and \(\dot{\varepsilon} \) is the strain rate. Assuming the melt in the shear zone is behaving as a Newtonian fluid with viscosity \(\eta \), we can define shear stress as:

\[
\sigma = \eta \dot{\varepsilon}
\]

(A3)

Substituting equations A3 and A2 into A1, we obtain:

\[
\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial z^2} + \frac{\eta \dot{\varepsilon}^2}{C_p \rho}
\]

(A4)

\(D, C_p, \) and \(\rho \) are constants, and we can define a constant \(N \) equal to:

\[
N = \frac{k^2}{C_p \rho}
\]

(A5)

and simplify equation A4 to:

\[
\frac{\partial T}{\partial t} = D \frac{\partial^2 T}{\partial z^2} + N \eta(T)
\]

(A6)

We use the explicit finite difference method to solve equation A6 for strain heating. In one dimension, we define \(z \) nodal points and calculate the difference in temperature around the node
of interest (indicated with subscript m) for each time step Δt. Superscript p designates each iterative step:

$$\frac{t_{m+1}^p - t_m^p}{\Delta t} = D \frac{(t_{m+1}^p + t_{m-1}^p - 2t_m^p)}{(\Delta z)^2} + N\eta(T)$$

(A7)

Equation A7 may be simplified to:

$$t_m^{p+1} = Fo \left(t_{m+1}^p - t_{m-1}^p \right) + (1 - 2Fo) t_m^p + N\eta(T) \Delta t$$

(A8)

Using the explicit method, the solution to equation A8 will be stable when the Fourier number $Fo \leq 0.5$, where Fo is defined as:

$$Fo = \frac{D\Delta t}{(\Delta z)^2}$$

(A9)
<table>
<thead>
<tr>
<th>Sample</th>
<th>T °C</th>
<th>$\log_{10}\eta_{app*}$ log (Pa s)</th>
<th>ε_{total} minutes</th>
<th>ρ_{total} pre kg m$^{-3}$</th>
<th>ρ_{total} post kg m$^{-3}$</th>
<th>ϕ_{total} pre</th>
<th>ϕ_{total} post</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLB02</td>
<td>856.3</td>
<td>11.82</td>
<td>6300</td>
<td>2304</td>
<td>2286</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>GLB01</td>
<td>904.9</td>
<td>10.82</td>
<td>900</td>
<td>0.04</td>
<td>2303</td>
<td>2286</td>
<td>0.15</td>
</tr>
<tr>
<td>GLB04</td>
<td>951.4</td>
<td>10.18</td>
<td>900</td>
<td>0.25</td>
<td>2292</td>
<td>2317</td>
<td>0.16</td>
</tr>
<tr>
<td>GLB03</td>
<td>978.3</td>
<td>9.67</td>
<td>900</td>
<td>0.48</td>
<td>2286</td>
<td>2330</td>
<td>0.16</td>
</tr>
</tbody>
</table>

* Newtonian behavior was observed over the range of temperatures and strain rates (10^{-6} - 10^{-8} s$^{-1}$) investigated.