ANALYTICAL TECHNIQUES

Mineral major- and trace-element compositions (University of Alberta)

Garnet and clinopyroxene major-element compositions were obtained using a JEOL JXA 8900 electron microprobe at the University of Alberta, Canada. Operating voltage was 20 kV with a beam current of 20 nA and a beam diameter between 2 and 10 µm. Counting time was set to 30 seconds on the peak. International standards of natural materials were used for calibration and all data were reduced with a CITZAF procedure.

Trace-element compositions were obtained by laser ablation ICP-MS, using a New Wave Research Nd:YAG UP213 laser system coupled to a Perkin Elmer Elan 6000 Quadrupole ICP-MS instrument. Laser spot size employed was 160 µm and each ablation was conducted for 50 seconds subsequent to 20 seconds of background counting with a fluence of ~15 J/cm². Several spots per mineral grain were analyzed and averages of at least 5 representative grains were used to determine the garnet and clinopyroxene trace-element compositions for each eclogite xenolith. CaO wt.% abundances determined by electron microprobe analysis were used as the internal standard. Elemental abundances were calculated using the GLITTER® laser ablation software (van Achterbergh et al., 2001). The NIST SRM 612 glass standard was analyzed at the start and finish of each session, and the analytical precision for most elements is typically better than 10% (2-sigma level). Further details on the technique employed here can be found in Schmidberger et al. (2007). For normalization of the mineral trace element patterns, we use the Primitive Mantle and C1-chondrite values of Palme and O'Neill (2003).

Clinopyroxene Pb isotope compositions (University of Alberta)

Clinopyroxene Pb isotope compositions were determined in-situ using the same laser system described above but coupled to a NuPlasma multicollector-ICP-MS. Clinopyroxene grains were ablated from thin sections using a 160 µm laser spot size in raster mode along 320 × 320 µm patterns. The extremely low Pb concentrations of < 1 ppm necessitated collection of Pb isotope data by using the three ion counters of the MC-ICP-MS instrument.

This collector configuration array does not allow for simultaneous acquisition of the 208Pb ion signal and, thus, we only report the 206Pb/204Pb and 207Pb/204Pb ratios. The simultaneous measurement of 205Tl/203Tl ratios for the NIST SRM 997 isotope standard, introduced via solution mode using a DSN-100 desolvating nebuliser, was conducted in order to monitor and correct the instrumental mass bias. The NIST SRM 614 standard glass (~4 ppm Pb) was analyzed repeatedly for its Pb isotope composition during each analytical session, and the measured average 206Pb/204Pb and 207Pb/204Pb Pb ratios deviated from the accepted value by <0.1% (external precision of better than 0.25%) (Woodhead and Hergt, 2001; Baker et al., 2004). The laser ablation procedure employed here for Pb isotope data collection is similar to that described in Simonetti et al. (2005). We also determined the Pb isotope composition of a bulk-rock powder from the host Nunatak-1390 kimberlite by TIMS. The chemical separation procedure and analytical details of the TIMS measurements are reported in Tappe et al. (2008).
Previous studies on the Pb isotope systematics in eclogites have shown that clinopyroxene typically hosts >90% of the bulk eclogite Pb and therefore clinopyroxene Pb isotopic analysis is representative of the bulk system (Kramers, 1979; Jacob and Foley, 1999; Schmidberger et al., 2007). Moreover, chemical diffusion experiments demonstrate that coarse-grained clinopyroxene is closed to U and Pb diffusional exchange above 1000°C, and is therefore fairly retentive of the Pb isotopic information at prevailing cratonic mantle conditions (Cherniak, 1998, , 2001).

Garnet oxygen isotope compositions (University of New Mexico)

Oxygen isotope analyses of garnet mineral separates were conducted by laser-fluorination at the University of New Mexico, following the procedure of Sharp (1990). Fresh, inclusion and crack-free garnet grains (multi-grain fractions of 1-2 mg) were loaded into a Ni block and dried in an oven. The garnet samples were reacted with BrF5 and heated with a Merchantek 25 W CO2 laser. The O2 gas samples were purified over liquid nitrogen and KCl traps, and then measured on-line in a Finnigan MAT Delta XL mass spectrometer using a dual-inlet mode. Measurement of standards at the beginning, middle, and end of each analytical session was performed to ensure data accuracy. The standards utilized were UWG-2 (δ^{18}O = 5.8‰; Valley et al., 1995) and Gee Whiz quartz (δ^{18}O = 12.5‰; Larson and Sharp, 2005) and values of δ^{18}O = 5.7±0.1‰ and 12.6±0.1‰, respectively, were obtained during the analytical sessions.

PETROGENETIC MODELING

Reconstructed whole-rock eclogite compositions

Reconstruction of whole-rock compositions is a standard technique in mantle xenolith studies, employed when rock fragments are too small for bulk chemical analysis and/or have been subjected to infiltration by the host magma (Shervais et al., 1988; Barth et al., 2001; Pearson and Nowell, 2002; Jacob, 2004). We calculated major- and trace-element whole-rock compositions for the Nunatak-1390 eclogites using garnet and clinopyroxene compositions in equal modal abundances (see Fig.DR1). The reconstructed whole-rock compositions listed in Table 1 are accompanied by our estimates of the uncertainty that is potentially introduced due to inaccurate knowledge of the exact mineral modes. Based on these error estimates we concur with Jacob and Foley (1999) that choice of the correct garnet/cpx ratio is more critical for the major-elements compared to the rather limited variability of the reconstructed trace-element concentrations. In awareness of these possible sources of error, we display the reconstructed whole-rock compositions at symbol sizes that are much larger than our error estimates (Figs.3, 4).

Calculation of eclogite equilibrium temperatures

Equilibration temperatures were calculated using the Fe$^{3+}$-Mg exchange between garnet and clinopyroxene at an assumed pressure of 50 kbar. A number of geothermometer calibrations exist and generally yield comparable temperature estimates, within a 50°C range (e.g., Ellis and Green, 1979 versus Krogh-Ravna, 2000). In this paper, we report equilibration temperatures for the Nunatak-1390 eclogites based on the updated Krogh-Ravna (2000)
formulation, since it was derived from a much wider compositional (e.g., garnet mg-numbers: 3.5-89) and P-T range (10-60 kbar; 600-1740°C) than any of the previous calibration. Our calculated Krogh-Ravna (2000) eclogite equilibration temperatures agree within ±10°C with the Ai (1994) geothermometer, which is generally considered most accurate for Mg-rich eclogites (cf., Jacob, 2004). In our calculations all Fe is assigned as Fe^{2+}, which yields minimum temperature estimates.

FIGURES FOR DATA REPOSITORY

Figure DR1: Scanned image of pristine high-MgO eclogite 488585A from Nunatak-1390, West Greenland. Field-of-view is ~5 cm. Note the equal proportion of interlocking garnet (red) and clinopyroxene (green), which appear to be in textural equilibrium. Note further the various laser ablation pits from both the trace element analyses (round spots) and Pb isotope analyses (raster patterns in clinopyroxene).
Figure DR2: Normalized REE distribution of calculated whole-rock eclogites from Nunatak-1390 using a 50/50 garnet/clinopyroxene mode. Chondrite values after Palme and O'Neill (2003). The batch melting model (shown in 5% increments) uses Late Archean Ivisaartoq pillow basalt 485420 (Polat et al., 2008) as a starting composition and the REE partition coefficients between eclogitic minerals and tonalitic melt at 1.8 GPa (Barth et al., 2002). The average Late Archean TTG gneiss from the Fiskefjord area, central NAC (Steenfelt et al., 2005) is shown for comparison demonstrating a complementary relationship to the refractory eclogites. Note the overlap between modeled eclogite residues and refractory Nunatak eclogites, suggesting at least 20-to-40% melt extraction.
Figure DR3: Normalized incompatible element distribution of (A) garnet and clinopyroxene, and (B) calculated pristine whole-rock eclogites from Nunatak-1390 using a 50/50 garnet/clinopyroxene mode. Primitive Mantle values after Palme and O’Neill (2003).

References for Data Repository

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Mineral</th>
<th>pristine high-MgO eclogites</th>
<th>514320</th>
<th>592572E</th>
<th>592572G</th>
</tr>
</thead>
<tbody>
<tr>
<td>48858C</td>
<td>n</td>
<td>cpx</td>
<td>*2n</td>
<td>grt</td>
<td>*2n</td>
</tr>
<tr>
<td>34</td>
<td>55</td>
<td>50/50</td>
<td>17</td>
<td>23</td>
<td>58</td>
</tr>
</tbody>
</table>

SiO₂: 54.6 5.6 40.7 0.7 47.6 1.4 54.8 1.1 40.1 1.3 47.4 1.5 55.6 0.5 41.2 0.6 48.4 1.4 55.2 0.3 40.7 0.5 48.0 1.5 54.9
TiO₂: 0.50 0.10 0.10 0.09 0.30 0.04 0.07 0.04 0.03 0.05 0.05 0.00 0.09 0.06 0.05 0.07 0.00 0.18 0.07 0.10 0.04 0.14 0.01 0.12
Al₂O₃: 7.8 1.5 23.6 0.3 15.7 1.6 5.5 0.7 23.5 0.5 14.8 1.5 5.9 0.3 23.2 0.4 14.6 1.7 6.9 0.2 23.3 0.2 15.1 1.6 6.4
Cr₂O₃: 0.08 0.03 0.06 0.03 0.07 0.00 0.19 0.03 0.16 0.08 0.18 0.00 0.23 0.02 0.20 0.04 0.22 0.00 0.26 0.03 0.21 0.04 0.26 0.01 0.26
FeO*: 3.1 0.4 16.4 2.1 9.7 1.3 3.6 0.6 17.8 0.3 10.7 1.4 2.8 0.1 16.3 0.3 9.6 1.4 3.7 0.2 17.7 0.6 10.7 1.4 4.0
MnO: 0.04 0.02 0.37 0.03 0.21 0.03 0.06 0.01 0.51 0.07 0.29 0.05 0.04 0.02 0.41 0.03 0.23 0.04 0.05 0.02 0.46 0.02 0.26 0.04 0.05
MgO: 12.0 1.0 14.7 0.8 13.3 0.3 13.3 0.5 15.3 0.5 14.4 0.2 13.1 0.3 16.0 0.3 14.5 0.3 11.8 0.3 15.3 0.4 13.6 0.4 12.0
CaO: 17.0 1.2 5.3 1.1 11.2 1.2 17.9 1.0 3.9 0.2 10.9 1.4 18.0 0.4 3.7 0.1 10.8 1.4 16.7 0.4 3.5 0.1 10.1 1.3 17.1
Na₂O: 4.37 0.56 0.04 0.04 2.21 0.43 3.72 0.52 0.03 0.02 1.88 0.37 3.66 0.17 0.03 0.02 1.85 0.36 4.80 0.17 0.03 0.02 2.42 0.48 4.57
K₂O: 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total: 99.4 101.3 100.3 99.0 101.5 100.2 99.3 101.1 100.2 99.6 101.3 100.5 99.3

*Temp. (°C)

n = 23 42 15 26 13 20 8 6 6

References:

Table DR1: Major (wt.%) and trace (ppm) element compositions of clinopyroxene and garnet from the Nunatak-1390 eclogite xenolith suite, North Atlantic craton, West Greenland.

<table>
<thead>
<tr>
<th></th>
<th>488558B</th>
<th>592572A</th>
<th>592572C</th>
</tr>
</thead>
<tbody>
<tr>
<td>grt</td>
<td>11</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>*2σ</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>*2σ</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>50/50</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>g</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>cpx</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>overprinted high-MgO eclogites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>σ</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>50/50</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Notes:
- *σ* represents standard deviation.
- 50/50 indicates a 50/50 mix.
- Overprinted high-MgO eclogites refer to the geological context.
<table>
<thead>
<tr>
<th>592572DB</th>
<th>592572F</th>
</tr>
</thead>
<tbody>
<tr>
<td>WR* ±40/60°</td>
<td>cp 2</td>
</tr>
<tr>
<td>50/50</td>
<td>19.0</td>
</tr>
<tr>
<td>47.9</td>
<td>1.3</td>
</tr>
<tr>
<td>0.27</td>
<td>0.02</td>
</tr>
<tr>
<td>14.4</td>
<td>1.8</td>
</tr>
<tr>
<td>0.40</td>
<td>0.00</td>
</tr>
<tr>
<td>8.1</td>
<td>1.0</td>
</tr>
<tr>
<td>0.19</td>
<td>0.03</td>
</tr>
<tr>
<td>15.7</td>
<td>0.5</td>
</tr>
<tr>
<td>0.12</td>
<td>0.36</td>
</tr>
<tr>
<td>1.88</td>
<td>0.36</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>100.0</td>
<td>99.5</td>
</tr>
<tr>
<td>987</td>
<td>956</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>1.17</td>
<td>0.21</td>
</tr>
<tr>
<td>1.40</td>
<td>0.10</td>
</tr>
<tr>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>0.36</td>
<td>0.07</td>
</tr>
<tr>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>0.36</td>
<td>0.05</td>
</tr>
<tr>
<td>104.23</td>
<td>20.77</td>
</tr>
<tr>
<td>104.91</td>
<td>10.86</td>
</tr>
<tr>
<td>3.28</td>
<td>0.53</td>
</tr>
<tr>
<td>15.90</td>
<td>2.25</td>
</tr>
<tr>
<td>38.97</td>
<td>2.34</td>
</tr>
<tr>
<td>227.97</td>
<td>26.86</td>
</tr>
<tr>
<td>2332.09</td>
<td>22.54</td>
</tr>
<tr>
<td>236.36</td>
<td>41.56</td>
</tr>
<tr>
<td>1.21</td>
<td>2.42</td>
</tr>
<tr>
<td>6.52</td>
<td>13.20</td>
</tr>
<tr>
<td>1.72</td>
<td>3.42</td>
</tr>
<tr>
<td>12.99</td>
<td>27.56</td>
</tr>
<tr>
<td>4.36</td>
<td>6.95</td>
</tr>
<tr>
<td>1.42</td>
<td>1.96</td>
</tr>
<tr>
<td>4.02</td>
<td>4.94</td>
</tr>
<tr>
<td>0.55</td>
<td>0.49</td>
</tr>
<tr>
<td>3.56</td>
<td>2.16</td>
</tr>
<tr>
<td>0.68</td>
<td>0.19</td>
</tr>
<tr>
<td>1.89</td>
<td>0.39</td>
</tr>
<tr>
<td>0.27</td>
<td>0.03</td>
</tr>
<tr>
<td>1.82</td>
<td>0.15</td>
</tr>
<tr>
<td>0.29</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Table DR2: Eclogitic clinopyroxene and bulk kimberlite Pb isotope compositions, Nunatak-1390, North Atlantic craton, West Greenland.

<table>
<thead>
<tr>
<th>Sample</th>
<th>206(^{Pb})/204(^{Pb})</th>
<th>2SE</th>
<th>207(^{Pb})/204(^{Pb})</th>
<th>2SE</th>
<th>total-Pb intensity [cps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>pristine high-MgO eclogites<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>488585A-cpx1</td>
<td>14.61</td>
<td>0.10</td>
<td>14.92</td>
<td>0.02</td>
<td>392,857</td>
</tr>
<tr>
<td>488585A-cpx2</td>
<td>14.08</td>
<td>0.01</td>
<td>14.81</td>
<td>0.01</td>
<td>394,468</td>
</tr>
<tr>
<td>488585A-cpx3</td>
<td>14.14</td>
<td>0.08</td>
<td>14.83</td>
<td>0.03</td>
<td>370,909</td>
</tr>
<tr>
<td>488585A-cpx4</td>
<td>13.80</td>
<td>0.08</td>
<td>14.76</td>
<td>0.02</td>
<td>369,759</td>
</tr>
<tr>
<td>514320-cpx1</td>
<td>14.17</td>
<td>0.06</td>
<td>14.85</td>
<td>0.05</td>
<td>379,755</td>
</tr>
<tr>
<td>514320-cpx2</td>
<td>14.81</td>
<td>0.16</td>
<td>14.95</td>
<td>0.03</td>
<td>437,296</td>
</tr>
<tr>
<td>514320-cpx3</td>
<td>14.35</td>
<td>0.08</td>
<td>14.86</td>
<td>0.02</td>
<td>380,207</td>
</tr>
<tr>
<td>overprinted high-MgO eclogites<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>592572A-cpx1</td>
<td>14.88</td>
<td>0.07</td>
<td>15.18</td>
<td>0.04</td>
<td>462,674</td>
</tr>
<tr>
<td>592572A-cpx2</td>
<td>14.78</td>
<td>0.06</td>
<td>15.19</td>
<td>0.05</td>
<td>467,242</td>
</tr>
<tr>
<td>592572A-cpx3</td>
<td>14.77</td>
<td>0.06</td>
<td>15.18</td>
<td>0.04</td>
<td>443,720</td>
</tr>
<tr>
<td>592572A-cpx4</td>
<td>14.89</td>
<td>0.12</td>
<td>15.15</td>
<td>0.02</td>
<td>448,974</td>
</tr>
<tr>
<td>592572A-cpx5</td>
<td>14.95</td>
<td>0.12</td>
<td>15.14</td>
<td>0.03</td>
<td>448,249</td>
</tr>
<tr>
<td>592572D-cpx1</td>
<td>14.74</td>
<td>0.03</td>
<td>15.08</td>
<td>0.05</td>
<td>288,630</td>
</tr>
<tr>
<td>592572D-cpx2</td>
<td>15.07</td>
<td>0.06</td>
<td>15.12</td>
<td>0.03</td>
<td>385,622</td>
</tr>
<tr>
<td>592572D-cpx3</td>
<td>14.74</td>
<td>0.07</td>
<td>15.11</td>
<td>0.06</td>
<td>323,189</td>
</tr>
<tr>
<td>592572D-cpx4</td>
<td>14.62</td>
<td>0.16</td>
<td>15.05</td>
<td>0.03</td>
<td>340,506</td>
</tr>
<tr>
<td>592572D-cpx5</td>
<td>15.22</td>
<td>0.08</td>
<td>15.17</td>
<td>0.03</td>
<td>342,702</td>
</tr>
<tr>
<td>592572D-cpx6</td>
<td>15.28</td>
<td>0.06</td>
<td>15.13</td>
<td>0.06</td>
<td>333,568</td>
</tr>
<tr>
<td>592572F-cpx1</td>
<td>20.65</td>
<td>0.17</td>
<td>15.52</td>
<td>0.04</td>
<td>520,267</td>
</tr>
<tr>
<td>592572F-cpx2</td>
<td>19.96</td>
<td>0.13</td>
<td>15.58</td>
<td>0.02</td>
<td>671,810</td>
</tr>
<tr>
<td>592572F-cpx3</td>
<td>20.76</td>
<td>0.14</td>
<td>15.58</td>
<td>0.03</td>
<td>702,524</td>
</tr>
<tr>
<td>592572F-cpx4</td>
<td>19.85</td>
<td>0.09</td>
<td>15.61</td>
<td>0.03</td>
<td>623,175</td>
</tr>
<tr>
<td>bulk kimberlite<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>488585 - @ 0 Ma</td>
<td>21.28</td>
<td>0.01</td>
<td>15.69</td>
<td>0.01</td>
<td>not applicable</td>
</tr>
<tr>
<td>488585 - @ 160 Ma</td>
<td>18.45</td>
<td>0.01</td>
<td>15.55</td>
<td>0.01</td>
<td>not applicable</td>
</tr>
<tr>
<td>SRM NIST 614 glass<sup>c</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.862</td>
<td>0.010</td>
<td>15.564</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.849</td>
<td>0.015</td>
<td>15.552</td>
<td>0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>17.865</td>
<td>0.010</td>
<td>15.559</td>
<td>0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.862</td>
<td>0.016</td>
<td>15.575</td>
<td>0.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.873</td>
<td>0.010</td>
<td>15.524</td>
<td>0.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.867</td>
<td>0.012</td>
<td>15.573</td>
<td>0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.857</td>
<td>0.010</td>
<td>15.538</td>
<td>0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.873</td>
<td>0.021</td>
<td>15.567</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.826</td>
<td>0.010</td>
<td>15.523</td>
<td>0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.859</td>
<td>0.014</td>
<td>15.562</td>
<td>0.012</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eclogite data were collected in-situ by LA-ICP-MS and all Pb isotope ratios are corrected for mass fractionation by simultaneous measurement of Tl.
Kimberlite data were collected conventionally by wet-chemical separation and TIMS analyses.
Recommended values are 17.842 ± 10 and 15.541 ± 1 (Baker et al., 2004)

References:
Table DR3: Laser-Fluorination oxygen isotope data for garnet separates from Nunatak-1390 eclogites, North Atlantic craton, West Greenland.

<table>
<thead>
<tr>
<th>Garnet samples</th>
<th>*Measured δ¹⁸O<sub>SMOW</sub> [%]</th>
<th>1-sigma</th>
<th>**Average δ¹⁸O<sub>SMOW</sub> [%]</th>
<th>2-sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>pristine high-MgO eclogites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>488585A (869°C)</td>
<td>6.18</td>
<td>0.09</td>
<td>6.09</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>5.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>488585C (835°C)</td>
<td>6.39</td>
<td>0.03</td>
<td>6.42</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>6.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>overprinted high-MgO eclogites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>592572A (964°C)</td>
<td>5.98</td>
<td>0.10</td>
<td>5.89</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>5.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>592572F (956°C)</td>
<td>6.27</td>
<td>0.05</td>
<td>6.32</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>6.36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Measured δ¹⁸O values are corrected to the Gee Whiz quartz standard (12.55‰; Larson and Sharp, 2005).

**The δ¹⁸O values are averages of two separate analysis and the 1-sigma uncertainty refers to the average reproducibility, i.e., half the difference between two analysis.

References: