DATA REPOSITORY: ANALYTICAL METHODS

U-Th-Pb Chemistry

Chips of coral interiors (aragonite; X-ray diffraction) were cut with a steel blade and a Dremel microdrill, washed four times in water in an ultrasonic bath, and then dried, weighed, dissolved, and spiked (U-Pb, 235U-236U-205Pb; U-series, 229Th-233U-236U). U and Pb were separated on 250 µL columns by HBr methods (AG1x8 resin in Br$^-$ form; see also Strelow and Toerien, 1966), and then Pb was purified of Ca traces on 100 µL columns. U, Th, and Pb were run on a Micro Mass sector 54 mass spectrometer, with Pb signals (~10^{-12} A for 208Pb) measured in Faraday cups in static mode. Fractionation corrections for Pb were 0.12% ± 0.04%/amu, and the correction for full procedural Pb blanks was 50±13 pg.

Corals for U-series analysis and U fractions from the U-Pb separation were prepared by iron coprecipitation and run by standard mass-spectrometric methods (Chen et al., 1986; Edwards et al., 1987). Spike calibration, chemical separation, and analytical protocols were confirmed by interlaboratory calibration with the University of Minnesota radioisotope lab and by U-series dating of known corals from Barbados (kindly provided by Larry Edwards).

Data Treatment

In corals, the initial coral (230Th/238U) is typically near zero, which generates a deficit in 206Pb* produced from 238U. The same holds for an initial coral (231Pa/235U) near zero, giving a slight deficit in 207Pb* from 235U. Modern and late Pleistocene oceans have a 234U excess of about 15% (e.g., Chen et al., 1986; Edwards et al., 1987), which ultimately yields an excess of 206Pb*. Combined, these effects yield a time lag of ~60 k.y. for growth in 206Pb/208Pb ratios after ~1 m.y..

U-Pb isochron ages and uncertainties were calculated at the 95% confidence level with Isoplot/Ex (Ludwig, 1999); the most precise ages were obtained with 3-D linear, concordia-constrained 238U/206Pb-207Pb/206Pb-208Pb/206Pb isochrons. Coral CCD-6058 has a 206Pb/208Pb intercept of 0.4906±0.007 (MSWD=0.33), and a 206Pb/207Pb intercept of 1.217±0.024
(MSWD=0.33). The low MSWD results from the estimate of uncertainty in blank level. Coral CCD-878 has a $^{206}\text{Pb}/^{208}\text{Pb}$ intercept of 0.513 ± 0.014 (MSWD=3.1), and a $^{206}\text{Pb}/^{207}\text{Pb}$ intercept of 1.28 ± 0.1 (MSWD=4.3). Because coral growth may occur over decades and in different seasons, the MSWD greater than 1.0 may stem from small variations of initial Pb acquired from the ambient marine setting.